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Abstract: Rapid, quantitative methods for characterizing the biological activities of kinase inhibitors in
complex human cell systems could allow the biological consequences of differential target selectivity to
be monitored early in development, improving the selection of drug candidates. We have previously
shown that Biologically Multiplexed Activity Profiling (BioMAP) permits rapid characterization of drug
function based on statistical analysis of protein expression data sets from complex primary human cell-
based models of disease biology. Here, using four such model systems containing primary human
endothelial cells and peripheral blood mononuclear cells in which multiple signaling pathways relevant to
inflammation and immune responses are simultaneously activated, we demonstrate that BioMAP analysis
can detect and distinguish a wide range of inhibitors directed against different kinase targets. Using a
panel of p38 mitogen-activated protein kinase antagonists as a test set, we show further that related
compounds can be distinguished by unique features of the biological responses they induce in complex
systems, and can be classified according to their induction of shared (on-target) and secondary activities.
Statistical comparisons of quantitative BioMAP profiles and analysis of profile features allow correlation
of induced biological effects with chemical structure and mapping of biological responses to chemical
series or substituents on a common scaffold. Integration of automated BioMAP analysis for prioritization
of hits and for structure-activity relationship studies may improve and accelerate the design and selection
of optimal therapeutic candidates.
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Introduction

PROTEIN KINASES ARE ATTRACTIVE DRUG TARGETS for a
number of disease indications.1 Protein phosphory-

lation by kinases plays a central role in the control and

regulation of signaling pathways in all cells, suggesting
that selective targeting of key kinases that regulate dis-
ease-specific mechanisms may offer safe and effective
therapies. However, the development of protein kinase
inhibitors remains challenging because most inhibitors

1BioSeek, Inc., Burlingame, CA.
2Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA.
3Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stan-

ford, CA.
*These authors are co-senior authors.

ABBREVIATIONS: BioMAP, Biologically Multiplexed Activity Profiling; CaMKII, Ca2!/calmodulin-dependent protein kinase II; Cdk, cyclin-
dependent kinase; CK2, casein kinase 2; DAF, decay accelerating factor; DRB, 5,6-dichloro-1-!-D-ribofuranosylbenzimidazole; ELISA, enzyme-linked
immunosorbent assay; FDR, false detection rate; GSK-3!, glycogen synthase kinase 3!; HMG-CoA, 3-hydroxy-3-methyl-glutaryl coenzyme A; Hsp90,
heat shock protein 90; HUVEC, human umbilical vein endothelial cells; ICAM-1, intercellular adhesion molecule-1; IFN-", interferon-"; IL, inter-
leukin; IMPDH, inosine 5"-monophosphate dehydrogenase; JAK, Janus kinase; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase;
MEK, mitogen-activated protein kinase kinase; NF-#B, nuclear factor-#B; PBMC, peripheral blood mononuclear cells; PI-3K, phosphatidylinositol 3-
kinase; PKA, protein kinase A; PPAR, peroxisome proliferation-activated receptor; PTK, protein tyrosine kinase; SAG, superantigen; SAR, structure-
activity relationship; siRNA, small interfering RNA; TBB, 4,5,6,7-tetrabromo-2-aza-benzimidazole; TNF-$, tumor necrosis factor-$; uPAR, uroki-
nase-type plasminogen activator receptor; VCAM, vascular cell adhesion molecule; VEGFR, vascular endothelial growth factor receptor.
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interact with the ATP-binding pocket and thus have the
potential to inhibit multiple targets. Canvassing large
numbers of kinases for cross-reactivity in biochemical as-
says can be helpful in identifying selectivity problems,
but is limited by the number of kinase assays available
and the fact that there are #500 human protein kinase
genes.2 In addition, for all chemical entities, and not just
inhibitors of protein kinases, there is the chance of in-
teractions with unexpected secondary targets involving
compound features outside the target interface.

We have recently described an approach (Biologically
Multiplexed Activity Profiling, or BioMAP profiling) for
the characterization of drug function using complex, pri-
mary human cell-based models of disease biology.3 In
these models, biological complexity is provided by (a)
the activation of multiple signaling pathways, (b) inter-
actions of multiple primary human cell types, and (c) the
use of multiple biological systems for data analysis. By
providing conditions where multiple pathways are active,
cell types are allowed to interact, and activities are as-
sessed in multiple “systems” (cell plus environment com-
binations) relevant to inflammation and immune biology,
compounds from many different mechanistic classes can
be detected and distinguished. These include inhibitors
of cytokines [e.g., tumor necrosis factor-$ (TNF-$) an-
tagonists], kinase and enzyme inhibitors [e.g., p38 mito-
gen-activated protein kinase (MAPK), MAPK kinase-1/2
(MEK1/2), phosphatidylinositol 3-kinase (PI-3K), 3-hy-
droxy-3-methyl-glutaryl coenzyme A (HMG-CoA) re-
ductase, inosine 5"-monophosphate dehydrogenase (IM-
PDH)], inhibitors of signaling adaptors [e.g., calcineurin,
heat shock protein 90 (Hsp90)], as well as modulators of
nuclear receptors [e.g., glucocorticoids, peroxisome pro-
liferator-activated receptor (PPAR) agonists]. BioMAP
profiling is automated and scalable, and results are quan-
titative and reproducible and provide insight into biolog-
ical activities in a rapid and practical manner without re-
quiring large numbers of molecular measurements.
BioMAP profiling has already been used to (a) correlate
functional responses of drugs to mechanism class, (b)
identify secondary target activities, (c) provide insights
into and generate hypotheses regarding mechanisms that
underlie clinical activities of approved therapeutics, and
(d) characterize gene function networks.3,4

The broad sensitivity of BioMAP assays for com-
pounds from many different mechanistic classes suggests
application of this technology to structure-activity rela-
tionship (SAR) studies, as the breadth of pathways and
mechanisms affecting BioMAP profiles should allow
ready identification and classification of off-target or sec-
ondary activities. SAR in BioMAP assays can potentially
allow optimization, or at least monitoring, of multiple as-
pects of the biological activity of lead analogues during
the optimization process. The present study demonstrates
the use of BioMAP profiling to define SARs within a se-

ries of trisubstituted imidazole inhibitors of p38 MAPK.
Modifications at both ends of the core structure regulate
the appearance of secondary activities, illustrating the
value of integrating complex biological systems analysis
for fine-tuning compound selection. Profiling in BioMAP
systems can be used throughout the drug development
process by identifying secondary activities and discrim-
inating core functional activities for selection of lead can-
didates (this article) and by revealing biological re-
sponses and secondary activities that can contribute to
both positive and negative side effects in animal studies
and in patients.3

Materials and Methods

Cytokines, antibodies, and reagents

Recombinant human interferon-" (IFN-"), TNF-$, in-
terleukin (IL)-1!, and IL-4 were from R&D Systems
(Minneapolis, MN). Histamine was from Sigma (St.
Louis, MO). Mouse antibodies were obtained from com-
mercial sources: murine IgG and anti-human vascular en-
dothelial growth factor receptor-2 (VEGFR2) (mIgG1;
Sigma), anti-human tissue factor (mIgG1; Calbiochem,
San Diego, CA), anti-human intercellular adhesion mol-
ecule-1 (ICAM-1) (mIgG1; Beckman Coulter, Fullerton,
CA), and anti-human E-selectin (mIgG1; HyCult
Biotechnology, Uden, The Netherlands). Mouse anti-
bodies against human vascular cell adhesion molecule-1
(VCAM-1) (mIgG1), HLA-DR (mIgG2a), CD3 (mIgG1),
CD40 (mIgG1), CD69 (mIgG1), MIG (mIgG1), MCP-1
(mIgG1), CD14 (mIgG1), IL-1$ (mIgG1), P-selectin
(mIgG1), DAF (mIgG2a), urokinase-type plasminogen
activator receptor (uPAR) (mIgG1), and CD38 (mIgG1)
were obtained from BD Biosciences (San Jose, CA).
Mouse antibodies against eotaxin-3 (mIgG1), IL-8
(mIgG1), and M-CSF (mIgG1) were obtained from R&D
Systems. Apigenin, wortmannin, GW8510, GW5074,
UO126, and genistein were obtained from Sigma.
PD098059, H-89, glycogen synthase kinase 3! (GSK-
3!) inhibitor II, SB202190, SB203580, 4,5,6,7-tetra-
bromo-2-aza-benzimidazole (TBB), BAY43-9006, H-
1152, PD169316, SKF-86002, WHI-P131, ZM39923,
AG490, AG126, SB239063, and SB220025 were from
Calbiochem. 5,6-dichloro-1-!-D-ribofuranosylbenzimida-
zole (DRB), PP2, and PP1 were from BIOMOL (Plymouth
Meeting, PA). ZM336372, KN-62, SB415286, SB216763,
kenpaullone, roscovitine, SP600125, and LY294002
were from Tocris (Ellisville, MO). Staphylococcal en-
terotoxin B, toxic shock syndrome toxin-1 (staphylococ-
cal enterotoxin F) from S. aureus (collectively called su-
perantigen; SAG), and lipopolysaccharide (LPS) from
Salmonella enteritidis were obtained from Sigma.
SB203580 analogues were synthesized and purified by
flash chromatography, and structures were verified by 1H
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NMR and mass spectroscopy as described.5 IC50 values
for inhibition of p38$ for each compound were deter-
mined as described.5

Cell culture

Human umbilical vein endothelial cells (HUVEC)
were cultured as described.3 Peripheral blood mononu-
clear cells (PBMC) were prepared from buffy coats (Stan-
ford Blood Bank, Stanford, CA) by centrifugation over
Hisopaque-1077 (Sigma). Four assay systems, 3C, 4H,
SAG, and LPS, were used. For the 3C system, HUVEC
were cultured for 24 h in microtiter plates (Falcon; BD
Biosciences), in the presence of cytokines IL-1! (1
ng/ml), TNF-$ (5 ng/ml), and IFN-" (20 ng/ml). For the
4H system, HUVEC were cultured in the presence of IL-
4 (5 ng/ml) and histamine (10 %M). For the SAG sys-
tem, HUVEC were cultured with PBMC (7.5 $ 104) and
SAG (20 ng/ml). For the LPS system, HUVEC were cul-
tured with PBMC (7.5 $ 104) and LPS (2 ng/ml). Com-
pounds were added 1 h before stimulation and were pres-
ent during the entire 24-h stimulation period. Cell-based
enzyme-linked immunosorbent assay (ELISAs) were car-
ried out as described.3

Small interfering RNA (siRNA) transfection

HUVEC cells were resuspended at 2 $ 106 cells in 100
%l of Nucelofection solution (Human Umbilical Vein
Endothelial Cell Nucleofector Kit, AMAXA, Koeln, Ger-
many). An siRNA targeting both MEK3 and MEK6
(GTGGCTACTTGGTGGACTC; 15 %l of a 20 %M so-
lution; Dharmacon, Lafayette, CO) or a scrambled con-
trol siRNA was added to the cell suspension, transferred
into an electroporation cuvette, and electroporated using
the U-1 setting. The cell suspension was then transferred
into a separate tube containing 3 ml of EGM-2 media
(Clonetics), incubated at 37°C for 10 min, and plated into
microtiter plates (25,000 cells/well) for cytokine activa-
tion and ELISA analysis as described above. Effective
(#80%) reduction of target mRNA levels in siRNA-
transfected cells was confirmed by quantitative RT-PCR.

Data analysis

Mean optical density values for each parameter mea-
sured by ELISA were calculated from triplicate samples
per experiment. Well-to-well coefficients of variance
range from 1 to 12%, depending on the parameter mea-
sured, and average 5% across all controls. Day-to-day
variability for a given readout, system, and treatment is
the greatest contributor to the overall variability (ranging
from 10 to 60% of the total variability), but is controlled
for by using a prediction envelope to give the error
boundaries for all the measurements simultaneously, con-
sistent with our multivariate analysis approach. The en-

velope estimates the variability of the measurements
around the mean (all data are centered). By combining
similar measurements from multiple experiments, we es-
tablish overall error measures for our experiments while
eliminating the specific bias of each experiment. We have
performed extensive studies concerning the number of re-
peats required for correctly classifying repeated profiles
within given confidence limits leading to the requirement
for at least three replicate wells per treatment and at least
three independent repeats (unpublished observations).
Within each experiment, mean optical density values
were used to generate ratios between treated (e.g., com-
pound or siRNA) and matched control (e.g., media or di-
methyl sulfoxide) parameter values. These normalized
parameter ratios were then log10 transformed. For profile
plots, the means % SEM from three or more experiments
are shown. Log expression ratios were used in all Pear-
son correlation calculations. For heat maps, averaged pro-
file data were ordered in the correlation plot by coupling
multidimensional scaling and pivoting to move high cor-
relations toward the diagonal. For Function Similarity
Maps, correlations were visualized in two dimensions by
multidimensional scaling using AT&T GraphViz soft-
ware. Distances between compounds are representative
of their similarities, and lines are drawn between com-
pounds whose profiles are similar at a level not due to
chance. Significant correlations were determined by (a)
identifying the number of correlations that exceed a given
threshold in the observed Pearson correlation distribution
of the profiles, (b) calculating the average number of
Pearson correlations that exceed this threshold using cor-
relations calculated from randomized data made by per-
muting the empirical profiles multiple times, (c) rese-
lecting the Pearson correlation threshold to minimize the
false detection rate (FDR) (the FDR provides the proba-
bility that a significant correlation is a false positive), and
(d) applying this cutoff Pearson correlation value to the
correlations between experimental profiles. This ensures
that for a 5% FDR, 95% of the correlations derived from
the experimental profiles are not due to chance.

Results

Mechanistic discrimination of kinase inhibitors by
BioMAP analysis in complex primary human cell-
based assays

We have previously shown that a wide range of bio-
logically active agents and drugs can be detected and dis-
tinguished by BioMAP profiling in primary human cell-
based model systems comprising endothelial cells and/or
PBMC in co-culture with specific activating stimuli.3,4

Figure 1A lists targets and pathways shown to be detected
and distinguished by BioMAP profiling in the four Bio-
MAP assay “systems” (3C, 4H, LPS, and SAG) shown
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in Fig. 1B. Here, we focus on the application of BioMAP
profiling to the characterization and SAR of kinase in-
hibitors.

Known pharmacologic inhibitors of several classes of
kinases were evaluated in four BioMAP model systems
(3C, 4H, LPS, and SAG; see Fig. 1B and Materials and
Methods for details). Compounds (at multiple concentra-

tions) were added to cells, environmental factors were
added, and after 24 h, the expression levels of proteins
(readouts listed in Fig. 1B) were measured by cell-based
ELISA. Figure 2A, left, shows the multisystem profiles
(31 parameters) for each compound (shown for the high-
est, nontoxic dose) in heat map form (after log10 expres-
sion ratios were calculated). Figure 2A, right, shows the
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FIG. 1. Four BioMAP inflammation
model systems detect and discriminate
modifiers of multiple targets and path-
ways. (A) Multiple therapeutically rele-
vant targets and pathways are detected
and discriminated in BioMAP models,
including a large number of kinases. (B)
Details on the four model systems used
in this article.
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FIG. 2. Functional responses of kinase inhibitors in BioMAP inflammation systems discriminate mechanism classes. Thirty-
three kinase inhibitors representing 14 distinct mechanism classes were tested in four BioMAP model systems (3C, 4H, LPS, and
SAG) as described in Fig. 1B and Materials and Methods. (A) Heat map of mean log parameter expression ratio data from at
least three experiments (n & 3 replicates in each experiment), showing the increase (green), decrease (red), or lack of change
(black) of individual parameters for each kinase inhibitor. To the right, Pearson correlation values for pairwise comparisons of
average profile data are shown: positive correlations are in blue (most intense for r ' 0.9); black is no correlation (r ! 0); and
yellow indicates negative correlations. The list of compounds in (A) was ordered automatically by scaling and pivoting to move
high correlations to the diagonal. (B) A Function Similarity Map is generated by subjecting the pairwise correlation data to mul-
tidimensional scaling. Significant correlations determined as described in Materials and Methods are shown by lines (FDR &
7%). The distance between compounds is inversely related to the similarity of the compound profiles. Compounds are color coded
by reported class as shown by the legend. Compounds were tested at multiple concentrations. Data shown are at concentrations
around their cellular EC50 (generally 10–100 times their reported biochemical IC50). Doses of compounds used: genistein (10
%M), PD098059 (10 %M), UO126 (3 %M), PD169316 (1 %M), SB239063 (3 %M), SKF-86002 (3 %M), SB220025 (3 %M),
SB203580 (2 %M), SB202190 (2 %M), PP2 (3 %M), PP1 (3 %M), KN-62 (3 %M), SP600125 (3 %M), ZM39923 (10 %M), WHI-
P131 (10 %M), roscovitine (3 %M), AG126 (10 %M), H-89 (1 %M), wortmannin (3 %M), LY294002 (1 %M), H-1152 (1 %M),
AG490 (10 %M), apigenin (3 %M), kenpaullone (1 %M), SB415286 (6 %M), GSK-3! II (6 %M), DRB (3 %M), BAY43-9006 (0.4
%M), TBB (10 %M), SB216763 (1 %M), GW5074 (1 %M), GW8510 (0.4 %M), ZM336372 (3 %M).

A

B
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pairwise Pearson correlation matrix analysis of the re-
sulting 31 parameter profiles (averaged across three ex-
periments). Such a correlation analysis effectively 
compares the “shape” of each profile, with a higher cor-
relation for profiles that have a similar shape. In Fig. 2B,
the multidimensional relationships between the various
profiles are represented in two dimensions using multi-
dimensional scaling and are visualized in a Function Sim-
ilarity Map. Each oval in this plot represents a specific
compound and concentration (as in Fig. 2A) with the dis-
tances between ovals inversely representative of the sim-
ilarity between compounds (the closer the ovals, the more
similar the compounds), with statistically significant (as
described in Materials and Methods) correlations identi-
fied by lines connecting ovals. For some mechanistic
classes, such as p38 MAPK, Lck, PI-3K, GSK-3!, and
MEK inhibitors, compounds within the same class mod-
ulate the expression of BioMAP parameters in a similar
fashion (Fig. 2A) and cluster together in the Function
Similarity Map (Fig. 2B). Compounds against distinct
targets [e.g., KN-62 and H-89; targeting Ca2!/calmod-
ulin-dependent protein kinase II (CamKII) and protein ki-
nase A (PKA), respectively], or those known to have poor
specificity for their targets or differential isoform selec-
tivity, such as the Janus kinase (JAK) inhibitors (AG490,
ZM39923, and WHI-P131), cyclin-dependent kinase
(Cdk) inhibitors (roscovitine and GW8510), or general
protein tyrosine kinase (PTK) inhibitors (AG126 and
genistein), elicit distinctive BioMAP profiles and do not
cluster together. Interestingly, significant differences
were also seen among Raf1 inhibitors (BAY 43-9006,
GW5074, and ZM336372) and casein kinase 2 (CK2) in-
hibitors (apigenin, DRB, and TBB), suggesting that these
compounds also have significant off-target or secondary
activities.

Discrimination of p38 MAPK inhibitors

When compared with the diverse set of bioactive ki-
nase inhibitors in Fig. 2, inhibitors of p38 MAPK induce
BioMAP profiles that are highly related to one another
and form a cluster in the Function Similarity Map (indi-
cated by the red outline in Fig. 2B), consistent with their
shared selectivity for p38 MAPK. However, closer in-
spection of the multisystem BioMAP profiles of
PD169316 and SB203580 (shown as line graphs in Fig.
3A) over a range of effective concentrations reveals con-
sistent profile features of SB203580 that are not shared
by PD169316. These features include inhibition of P-se-
lectin expression in the 4H system, and strong inhibition
of VCAM-1, E-selectin, and IL-8 in the LPS system.
These activities are likely not due to differences in po-
tency against p38$, as the two compounds exhibit simi-
lar potencies in biochemical assays (see Fig. 4) and in
the inhibition of HLA-DR expression in the 3C system.

The strong inhibition of HLA-DR appears to be an on-
target effect because this activity is also observed fol-
lowing specific siRNA inhibition of the p38 pathway in
the 3C system. As shown in Fig. 3B, an siRNA with in-
hibitory activity against MEK3 and MEK6, the upstream
activators of p38 MAPK,6,7 gives the same profile as
small-molecule p38 MAPK inhibitors in the 3C system,
including the robust down-regulation of HLA-DR.
siRNA targeting both p38$ and p38! simultaneously was
not active, possibly due to the interchangeability of these
isoforms with the " and & isoforms or to insufficient
knockdown of the proteins (data not shown).

BioMAP profiling was then used to explore the 
structural requirements for the activities of SB203580
identified by BioMAP analysis. Co-crystalization of
SB203580 bound to p38$8,9 highlights the interaction
between SB203580 chemical substituents (A, B, and C
off the imidazole ring) and the ATP-binding pocket of
the kinase (Fig. 4A). Whereas the fluorophenyl group
of SB203580 (substituent B) has been shown to be ori-
ented toward the “gatekeeper” residue in the ATP-bind-
ing pocket, a key determinant of small-molecule inhib-
itor binding specificity in kinases,9 substituents A and
C have fewer interactions with the ATP-binding pocket
and more solvent exposure. To explore structural fea-
tures at positions A and C that might contribute to the
activities identified for SB203580, the BioMAP profiles
of several well studied p38 MAPK antagonists, includ-
ing PD169316, SB202190, SB239063, and SB220025,
were compared (Fig. 4). These compounds fall into two
structural groups: PD169316 and SB202190, which
have 4-pyridyl groups at the 5 position of the imida-
zole ring and contain substitution at the 4 position 
of the 2-phenyl ring (modifications of the C group of
SB203580); and SB239063 and SB220025, which con-
tain differently substituted pyrimidinyl groups at the 5
position of the imidazole ring, lack the 2-phenyl groups,
and instead have substituted aliphatic substituents at the
1 position (modifications of both the A and C groups
of SB203580) (Fig. 4A).

The Function Similarity Map in Fig. 4C shows the re-
lationship of compound profiles at multiple doses. Com-
pound-specific activities are revealed by differential clus-
tering when these closely related compounds are
compared with one another, rather than with the broader
set of kinase inhibitors as shown in Fig. 2. In this map,
the circles representing compounds are coded by color
and by size according to dose. Notably, SB202190 and
SB203580 show function similarity (cluster) in the cen-
tral dose ranges, as do PD169316, SB220025, and
SB239063 (Fig. 4C). Importantly, clustering of each
compound is dose-independent over a significant con-
centration range ("10–20$), indicating that the profiles
retain a characteristic shape. (Exceptions are the extreme
doses of PD169316, SB202190, and SB203580, where
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additional off-target activities or early toxic effects may
contribute to profile differences.)

Inspection of the multisystem profile for each com-
pound allows identification of the profile features that
differentiate it from the other compounds. As shown in
Fig. 4B, the profile plots reveal that SB202190 shares the
biological activities of SB203580: inhibition of P-selectin
in the 4H system and VCAM-1 and E-selectin in the LPS
system, features not shared by PD169316 or SB239063
(see white arrows in Fig. 4B). The SB239063 profile is
more similar to the PD169316 profile, and SB220025 has
a profile that is in many regards intermediate between
those of PD169316 and SB220025, except for a unique
activity on CD87/uPAR in the 4H system. In this way,
the comparison of BioMAP profiles of compounds tested
at multiple concentrations facilitates rapid classification
of compounds based on reproducible, drug-specific bio-
logical activities.

To determine how structural changes at R1 (the sub-
stituent of SB203580 that interacts with the “gatekeeper”
residue of p38) may affect the bioactivity profiles, we ex-
amined a set of analogues around SB203580 (Fig. 5) in

which the fluorophenyl group (the B substituent of
SB203580 from Fig. 4A) was replaced with a series of
aromatic substituents of varying steric demand (Fig. 5A).
These analogues were designed to exhibit differential se-
lectivity toward different kinases based on the established
binding mode of SB203580 to its best characterized tar-
get, p38$,8 and their biochemical IC50 values for p38$
are shown for comparison (Fig. 5A). BioMAP analyses
were carried out to assess the effects of these modifica-
tions on the biological activities (i.e., profile features) and
cellular potency (i.e., dosing) identified for SB203580.
The resulting comparison of the multisystem BioMAP
profiles for each compound at four doses (5, 2, 0.6, and
0.2 %M) is shown in the Function Similarity Map in Fig.
5B. The profiles from these compounds remain clustered
over a range of concentrations (except for the lowest con-
centrations of some analogues due to low potency, and
therefore profiles that lose features retained in the higher
dose range) with the exception of SK582 (orange circles),
which does not cluster with the other compounds. SK582
is a very weak p38 MAPK antagonist having a bio-
chemical IC50 for p38$ (10 %M) that is "100-fold lower

p38 Inhibitor Selectivity 437

FIG. 3. p38 MAPK inhibitor profiles and on-target function
validation by siRNA. (A) BioMAP profiles in four model sys-
tems for the p38 MAPK inhibitors PD169316 and SB203850
tested at multiple concentrations. Levels of protein readouts
were measured by ELISA as described in Materials and Meth-
ods and presented as log expression ratios [log10(parameter
value with drug/parameter value of control)] relative to solvent
controls. The mean and standard error are shown for each read-
out parameter, connected by lines for ease of visualization (n &
3 measurements for at least three individual experiments). (B)
Comparison of the profile of PD169316 in the 3C system to
siRNA knockdown of both MEK3 and MEK6 (average of three
experiments). Black lines in (A) and (B) represent the 99% pre-
diction interval of the solvent control data.

A B
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than the other analogues. This suggests that the biolog-
ical activities observed for SK582 are unlikely to be me-
diated by p38 MAPK inhibition, consistent with the lack
of inhibition of HLA-DR expression in the 3C system
by this compound. However, SK582 does retain strong

inhibitory activity on P-selectin in the 4H system, one
of the features that distinguishes SB203580 from
PD169316 as discussed above. This activity, isolated in
the p38 MAPK-independent profile of SK582, may re-
sult from an off-target effect for SB203580, mediated by
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FIG. 4. Comparison of BioMAP profiles of SB203580 analogues with substituent changes at two positions. (A) Crystal struc-
ture of p38$ bound to the inhibitor SB203580 demonstrating the protein interaction positions of the three functional substituents
(A, B, and C) off the imidazole ring. The inhibitors PD169316 and SB202190 have modifications to the C portion of SB203580,
whereas SB239063 and SB220025 have modifications to the A and C positions. IC50 data for inhibition of biochemical p38$ ac-
tivity are shown. (B) BioMAP profiles for one concentration of each p38 MAPK inhibitor (24-h assay). Concentrations were se-
lected (1–3 %M) that gave a characteristic profile for each compound (clustering with other doses of the same compound) and
that yielded similar inhibition of HLA-DR expression (black arrow). White arrows indicate parameters that are modulated dif-
ferently by various compounds. Data are presented as log expression ratios [log10(parameter value with drug/parameter value of
control)] relative to solvent or media controls. The mean and standard error are shown for each readout parameter, connected by
lines for ease of profile visualization (n & 3 measurements for at least three individual experiments). (C) A Function Similarity
Map of SB203580, SB202190, PD169316, SB239063, and SB220025 at multiple concentrations. Each compound is a different
color as in (A), and the area of each circle is proportional to dose. FDR & 9%.

A

B

C
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structural features independent of R1 (substituent B in
Fig. 4). Thus, each of the analogues in this series of R1

variants that retain significant p38 inhibitory activity
(biochemically, and as indicated by their BioMAP pro-
files) retains a profile similar to that of the parent com-
pound SB203580, indicating that structural features
apart from R1 control the unique activities on E-selectin,
VCAM-1, and IL-8 in the LPS system. We conclude that
quantitative BioMAP profiling can be used to identify

specific structural correlates of secondary activities and
to drive SAR studies of kinase inhibitors with enhanced
knowledge.

Discussion

Protein kinases are an important class of therapeutic
targets.1 They comprise a large gene family, the kinome,2

with some 518 members that can function as key regu-
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FIG. 5. SAR of SB203580 analogues with modifications of the “gatekeeper” associated fluorophenyl group. (A) Chemical mod-
ifications at the R1 position of SB203580 and biochemical IC50 data for p38$ inhibition. (B) BioMAP profiles of each SB203580
analogue, tested at four concentrations, were clustered as described in Materials and Methods, and their relationships are repre-
sented in the Function Similarity Map. Compounds are color coded as in (A) with the circle area proportional to dose. Statisti-
cally significant correlations determined as described in Materials and Methods are shown by lines. FDR & 3%. (C) Profiles of
each SB203580 analogue at 5 %M. The mean of n & 2 experiments with three wells each is shown without error bars for ease
of viewing. Data are presented as log expression ratios [log10(parameter value with drug/parameter value of control)] relative to
solvent or media controls.

A

B
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lators in many of the important signaling pathways in dis-
ease. Kinase family members share a catalytic domain,
conserved in sequence and structure, that features an
ATP-binding pocket that is highly amenable to small-
molecule inhibition. However, the design and selection
of optimal therapeutic candidates have not been without
difficulty. High affinities are required to compete with
the high ATP concentrations in vivo and, more impor-
tantly, selectivity problems have slowed the progress of
compounds in this mechanistic class and for ATP com-
petitive inhibitors in general, because the high degree of
homology between family members has led to a high fre-
quency of secondary target effects.10

The difficulty in developing highly selective inhibitors
also complicates our understanding of cell-signaling
mechanisms, much of which depends on the use of spe-
cific inhibitors.10 This problem is highlighted for several
classes of kinase inhibitors in the present analysis and is
reflected in the poor clustering of compounds ostensibly
against a common target when analyzed in BioMAP sys-
tems (e.g., Cdk inhibitors, Raf1 inhibitors, CK2 inhibi-
tors, JAK inhibitors). In many cases, this is the result of
a particular compound inhibiting one or more secondary
targets. For example, ZM336372 inhibits p38 MAPK ki-
nase,11 in addition to Raf1, and exhibits a unique Bio-
MAP profile distinct from the other Raf1 inhibitors tested
(GW5074 and BAY43-9006).

The selectivity problems of p38 MAPK inhibitors are
well known. Off-target activities of SB203580 for Lck,
Src, and cyclooxygenase-1 have been reported.12,13 In
addition, although a number of p38 MAPK inhibitors
have entered clinical trials in rheumatoid arthritis and
other indications, none has yet been approved. Com-
pounds that have not succeeded have been terminated for
various reasons,14 perhaps reflecting differential off-tar-
get or secondary activities. The studies here demonstrate
how chemically distinct inhibitors of p38 MAPK can be
rapidly distinguished by the shared (in-target class) or
unique (secondary and off-target) features of the biolog-
ical responses they induce in BioMAP model systems.
Secondary activities were identified for SB203580 that
are shared by some, but not all, of the p38 MAPK in-
hibitors tested. Such additional activities may not always
be liabilities and could contribute to clinical effective-
ness. This appears to be the case for the kinase inhibitor,
Gleevec, approved for treatment of chronic myelogenous
leukemia, that inhibits c-kit and platelet-derived growth
factor receptor kinases in addition to ABL.1

BioMAP model systems can identify unexpected off-
target and secondary activities and, with more knowledge
of the activities of successful and failed compounds in
BioMAP model systems, may prove useful for distin-
guishing positive from negative (undesirable) activities.
We have previously described the ability of BioMAP pro-
filing in only three systems relevant to vascular inflam-

mation to detect and distinguish the activities of com-
pounds from a broad range of mechanism classes and
therapeutic categories.3 In these biologically complex
systems, pathway–pathway interactions and cell–cell
communication contribute to the overall response profile,
allowing pathways (and targets) that are outside the core
inflammation pathways [e.g., nuclear factor-#B (NF-#B),
JAK/STAT, etc.] to be detected. This broad sensitivity
may be an innate property of complex cellular systems,
in which the level of each molecular or protein readout
measured is an indirect reflection of pathway interactions
mediated by hundreds of signaling components. The re-
sponses measured in these complex systems are surpris-
ingly robust and reproducible, and allow the application
of this approach for efficient classification of compounds
according to their functional activities.

The present studies also illustrate the application of
BioMAP model systems for target validation through a
chemical genetics approach. As we demonstrate for p38
MAPK inhibitors, on-target activities are identified as
common features of BioMAP profiles elicited by multi-
ple, structurally distinct inhibitors, whereas off-target ef-
fects commonly include those that are not shared. How-
ever, if an inhibitor elicits a novel feature, this may result
from mechanistic differences (e.g., inhibitor binding to
active versus inactive forms of the target) and may be a
true “on target” effect. Gene knockdown with siRNA in
BioMAP models can provide complementary informa-
tion, although as we observed for p38$ and p38!, results
obtained from knockdown of validated targets do not al-
ways correlate with those using chemical inhibitors.
SiRNA can be a poor predictor of drug effects for sev-
eral reasons. In addition to issues of isoform redundancy
and knockdown inefficiency, which can cause siRNA ex-
periments to fail to predict positive drug effects, knock-
down can induce unexpected phenotypes by altering pro-
tein docking or signaling complex formation events that
are not elicited by small-molecule inhibitors. These is-
sues are frequently problematic for targets within signal-
ing pathways, which often have multiple functional do-
mains. As an alternative approach, we have previously
described using BioMAP model systems for the identifi-
cation and validation of new targets by gene overex-
pression,4 which allows signaling networks and feedback
mechanisms to be rapidly identified.

The goal of lead optimization is the best compromise
between improved activity, bioavailability, and safety of
a drug. Classically, structure-activity studies in lead op-
timization have focused first on improvements in potency
and selectivity, then subsequently on bioavailability and
ADMET properties. By simultaneously addressing po-
tency, selectivity, and favorable chemical properties (e.g.,
solubility, permeability), BioMAP profiling is compati-
ble with new strategies for parallel lead optimization, 
driven by the economic need for early attrition. As we
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demonstrate here, the BioMAP profile shape can provide
an informative biological measure of target specificity.
As analogues of the lead compound are tested, deviations
from the “parent” profile indicate likely alterations in tar-
get specificity, as well as secondary activities; as the
number of different compounds against a specific target
increases, so does the ability of BioMAP assays to iden-
tify truly “selective” biological effects. BioMAP analy-
sis at multiple concentrations provides cell-based po-
tency, therapeutic window, and toxicity information.
Differences in the biological activities of compounds
generated against the same target can arise from several
sources: inhibition of different secondary targets, cellu-
lar uptake (differences can be cell type-specific), and
mechanism of action. The BioMAP approach described
here addresses all of these issues, and additionally allows
for the selection of optimal compounds that may act on
multiple targets, as beneficial features can often be dis-
tinguished from liabilities.

The BioMAP approach to kinase inhibitor identifica-
tion and optimization has the potential to increase the
speed with which compounds against kinase targets reach
the clinic. BioMAP analysis can be used to quickly map
biological responses to particular chemical structures, in-
cluding substituents on a common scaffold. Integration
of the BioMAP approach into kinase inhibitor develop-
ment could be used to identify and monitor off-target and
secondary activities, to define SARs, and to accelerate
the design and selection of optimal therapeutic candi-
dates. New BioMAP model systems containing addi-
tional primary cell types (e.g., fibroblasts, keratinocytes,
bronchial epithelial cells, mast cells, macrophages) are
expanding the biology covered into additional disease ar-
eas, including fibrosis, asthma, arthritis, and psoriasis, in-
creasing the ability of BioMAP models to be the predic-
tive link between target validation and screening and in
vivo studies in both animals and humans.
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