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SUMMARY

HIV-1 Nef, which is required for the efficient on-
set of AIDS, enhances viral replication and infec-
tivity by exerting multiple effects on infected
cells. Nef downregulates cell-surface MHC-I
molecules by an uncharacterized PI3K pathway
requiring the actions of two Nef motifs—EEEE65

and PXXP75. We report that the Nef EEEE65 tar-
geting motif enables Nef PXXP75 to bind and
activate a trans-Golgi network-localized Src
family tyrosine kinase (SFK). The Nef/SFK com-
plex then recruits and phosphorylates the tyro-
sine kinase ZAP-70, which binds class I PI3K
to trigger MHC-I downregulation in primary
CD4+ T cells. In promonocytic cells, Nef/SFK re-
cruits the ZAP-70 homolog Syk to downregulate
MHC-I, implicating this PI3K pathway in multiple
HIV-1 reservoirs. Isoform-specific PI3K inhibi-
tors repress MHC-I downregulation, identifying
them as potential therapeutic agents to combat
HIV-1. The discovery of this Nef-SFK-ZAP-70/
Syk-PI3K signaling pathway explains the hierar-
chal role of the Nef motifs in effecting immuno-
evasion.

INTRODUCTION

In infected people, HIV-1 establishes long-lived reservoirs

in a number of cell types, including macrophages, den-

dritic cells, and resting CD4+ T cells, which resist highly

active antiretroviral therapy (HAART; Stevenson, 2003).

To respond to the virus infection, the host activates an

antiviral response, integrating adaptive immunity and

apoptotic mechanisms to destroy the virus. Pathogenic

viruses counter the host antiviral response by expressing

specialized genes that prevent antigen presentation and
Cell H
apoptosis (Benedict et al., 2002; Peterlin and Trono,

2003). Unlike other pathogenic viruses, HIV-1 uses a lim-

ited set of gene products to coordinate the antiviral coun-

terattack. One of these gene products, Nef, is a 27 kDa N-

myristoylated protein that enhances viral replication and

virion infectivity and is required for the onset of AIDS fol-

lowing HIV-1-infection (Das and Jameel, 2005; Peterlin

and Trono, 2003). Nef affects cells in many ways, including

altering T cell activation and maturation (Stevenson, 2003;

Stove et al., 2003; Thoulouze et al., 2006), subverting the

apoptotic machinery, and downregulating CD4 molecules

and major histocompatibility complex class I (MHC-I) mol-

ecules encoded by the HLA-A and -B loci (Peterlin and

Trono, 2003). The downregulation of MHC-I by SIV Nef

in rhesus macaques limits CD8+ T cell-mediated killing

and contributes to the pathogenic effect of Nef, illustrating

the importance of Nef-mediated immunoevasion to dis-

ease progression (Swigut et al., 2004).

Current HIV-1 therapeutics principally target the activi-

ties of virally encoded reverse transcriptase and protease.

However, their effectiveness is compromised by the emer-

gence of drug-resistant viral strains. A promising alterna-

tive approach is to develop therapeutics that interfere

with the action of HIV-1 proteins on cellular factors

(Greene, 2004). HIV-1 Nef represents a potential target

for such an approach, as it binds to and stimulates the ac-

tivity of several cellular kinases, including Src family tyro-

sine kinases (SFKs; Lee et al., 1995; Trible et al., 2006),

which promotes HIV-1 disease in animal models (Hanna

et al., 2001), and class I PI3K, which enables HIV-1 to in-

crease virus production, block apoptosis, and downregu-

late cell-surface MHC-I (Blagoveshchenskaya et al., 2002;

Linnemann et al., 2002; Peterlin and Trono, 2003). The

profound ability of the Bcr-Abl and c-kit inhibitor Gleevec

to cure specific cancers supports such an approach

(Druker, 2004). Unfortunately, current PI3K inhibitors, in-

cluding wortmannin and LY294002, are panselective,

showing a similar IC50 against all PI3Ks (Ward et al.,

2003). Moreover, the concentrations required for

LY294002 to block PI3K are similar to the concentrations
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Figure 1. Nef-Triggered MHC-I Downregulation in Primary CD4+ T Cells Is Mediated by Class I PI3K

(A) Primary CD4+ T cells incubated with 2 ng/ml IL-7 for 4 days were infected with the Nef� or Nef+ pseudotyped viruses (moi = 5). At 40 hr

postinfection cells were treated with 1 mM PI-103, 1 mM PIK-112, or 1% DMSO (control) for 3 hr. The cells were then incubated with mouse-

anti-HLA-A2.1 followed by anti-mouse-PE-conjugated Ig and analyzed by flow cytometry. Viable cells were analyzed for eGFP and anti-HLA-

A2.1. The frequency of eGFPhigh cells displaying downregulated MHC-I is shown in the lower right gate. Similar results were obtained using PHA/

IL-2-stimulated primary CD4+ T cells or using mAb W6/32 (data not shown). Western blot analysis showed that Nef expression was greater in

eGFPhigh/MHC-Ilow cells than in eGFPhigh/MHC-Ihigh cells, revealing an incomplete correlation between Nef and GFP expression in this vector

(data not shown).

(B) Nef� or Nef+ pseudovirus-infected primary CD4+ T cells were treated with 1 mM PI-103, 1 mM PIK-112, 5 mM LY294002, or 1% DMSO for 3 hr and

then analyzed by flow cytometry. The effect of each compound on MHC-I downregulation was then normalized to the extent of MHC-I downregulation

in control cells infected with the Nef+ or Nef� pseudoviruses (set at 100 and 1, respectively). Bottom: Western blot showing the expression of Nef and

the levels of actin (input). Error bars represent the mean ± SD of four independent experiments with cells isolated from three donors (n = 4).

(C) Primary CD4+ T cells or the indicated cell lines were harvested, and the expression of the indicated proteins was determined by western blot.

(D) U373 MG cells were transfected or not with pSG5-PTEN-HA for 48 hr and then infected with VV:WT or VV:Nef (moi =10, 4 hr). Where indicated, cells

were treated with 5 mM LY294002 for 40 min prior to fixation. The cells were then fixed and stained with anti-MHC-I (mAb W6/32, green) and anti-HA

(red). Scale bar, 20 mm.

(E) Top: H9 CD4+ T cells were infected with VV:WT or VV:Nef (moi = 10, 4 hr) and then treated or not with PI-103 (1 mM), PIK-112 (1 mM), or LY294002

(5 mM) for 1 hr. Cells were fixed and MHC-I molecules were stained with mAb W6/32. Scale bar, 10 mm. Middle: H9 CD4+ T cells infected with VV:WT
122 Cell Host & Microbe 1, 121–133, April 2007 ª2007 Elsevier Inc.
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that cause cell death—precluding their use as therapeu-

tics (Ward et al., 2003). Recently, a new group of small-

molecule PI3K inhibitors were developed that are selec-

tive for the class I PI3K isoforms (Knight et al., 2006).

One of these inhibitors, PI-103, which is a pyridinylfurano-

pyrimidine derivative, targets multiple class I p110

catalytic subunits, blocking PKB/Akt activation and ar-

resting cells in G0/G1 without the toxicity associated with

panselective PI3K inhibitors (Fan et al., 2006; Knight

et al., 2006).

The development of isoform-specific PI3K inhibitors

suggests a novel approach to combat HIV-1. However,

the role of PI3K in Nef-mediated MHC-I downregulation

is controversial. We reported that Nef diverts cell-surface

MHC-I molecules to trans-Golgi network (TGN)-associ-

ated compartments in heterologous cells by a PI3K-stim-

ulted, ARF6-dependent, endocytic pathway (Blagovesh-

chenskaya et al., 2002). This MHC-I downregulation

requires the hierarchical action of three motifs (Das and

Jameel, 2005; Peterlin and Trono, 2003): an acidic cluster

(EEEE65), required for binding to the cytosolic sorting pro-

tein PACS-1 (Piguet et al., 2000); an SH3 domain-binding

motif (PQVP75) that directs association of Nef with SFKs

(Lee et al., 1995); and an N-proximal a-helical region con-

taining a critical methionine (M20), which promotes associ-

ation of MHC-I with the heterotetrameric sorting adaptor

AP-1 (Roeth et al., 2004). The conservation of these three

motifs in the pandemic M group HIV-1, which accounts for

over 90% of all AIDS cases worldwide, suggests that they

control an essential pathway required for HIV-1 pathogen-

esis (Keele et al., 2006). But this model has been chal-

lenged by others who reported that in leukemic T cell lines

or in U373 astrocytoma cell lines Nef acts solely on newly

synthesized MHC-I molecules and not on cell-surface

MHC-I, and that Nef acts independently of PI3K because

the panselective PI3K inhibitors LY294002 or wortmannin

failed to block MHC-I downregulation in these trans-

formed cell lines (Kasper and Collins, 2003; Larsen et al.,

2004).

We sought to determine the basis for the conflicting

models of MHC-I downregulation, and in doing so, we dis-

covered a PI3K activation pathway used by HIV-1 Nef to

downregulate cell-surface MHC-I in HIV-1 target cells.

We show that the Nef EEEE65 targeting motif, which is re-

quired for efficient binding to PACS-1 (Piguet et al., 2000),

enables the Nef PXXP75 motif to bind and activate an SFK

localized to TGN-associated reservoirs. The Nef/SFK

complex then recruits and phosphorylates ZAP-70, which

activates Nef-associated PI3K to trigger the PI-103-sensi-

tive downregulation of MHC-I in primary CD4+ T cells and

model CD4+ T cell lines. We also show that, in promono-

cytic cells and heterologous cell types, Nef/SFK recruits

the ZAP-70 homolog Syk to stimulate the PI3K-dependent

downregulation of cell-surface MHC-I. Our elucidation of

this Nef-SFK-ZAP-70/Syk-PI3K signaling pathway ex-
Cell H
plains the hierarchal role of the Nef motifs that control im-

munoevasion and identifies new targets for HIV-1 therapy

with the potential to make use of newly developed iso-

form-specific PI3K inhibitors.

RESULTS

HIV-1 Nef Uses a PI3K-Dependent Pathway

to Downregulate Cell-Surface MHC-I in CD4+ T Cells

HIV-1 Nef utilizes PI3K to downregulate cell-surface MHC-

I in heterologous cell types, but whether it uses this same

pathway to downregulate MHC-I in HIV-1 target cells and

the mechanism controlling this pathway are unknown. We

thus tested the effect of PI3K inhibitors on Nef-induced

MHC-I downregulation in primary CD4+ T cells isolated

from healthy donors. Cells were pretreated with PHA/IL-

2 or IL-7 and then infected with VSV-G pseudotyped,

GFP-expressing HIV-1 viruses derived from HIV-1 NL4-3

that either lack the Nef gene or express Nef (Husain

et al., 2002). Whereas PHA/IL-2 robustly stimulates cellu-

lar PI3K activity and T cell activation, nonmitogenic levels

of IL-7 used here do not (Figure S1 in the Supplemental

Data available with this article online). We then determined

the frequency of GFP-positive infected cells with downre-

gulated cell-surface HLA-A2.1 by flow cytometry. Like the

activity of other Nef alleles (Keppler et al., 2006), NL4-3

Nef downregulated cell-surface HLA-A2.1 by 40%–60%

as determined by fluorescence intensity regardless of

treatment with IL-7 or IL-2/PHA (Figures 1A and 1B and

data not shown). Parallel cultures were treated with the

class I PI3K inhibitor PI-103 or its inactive analog, PIK-

112, for 3 hr prior to analysis, with no change in cell viabil-

ity as determined by forward and side scattering. We

found that PI-103 inhibited the Nef-induced MHC-I down-

regulation in primary CD4+ T cells, whereas PIK-112 had

no effect (Figure 1A), suggesting that Nef uses a PI3K-

dependent pathway to efficiently downregulate cell-sur-

face MHC-I in primary CD4+ T cells. By contrast, PI-103

had no measurable effect on Nef-mediated CD4 downre-

gulation (Figure S2). Moreover, the inhibition of MHC-I

downregulation by PI-103 was similar to that observed

with the commonly used, panselective PI3K inhibitor

LY294002, which also inhibits MHC-I downregulation in

heterologous cells (Figure 1B).

The ability of PI3K inhibitors to repress efficient downre-

gulation of cell-surface MHC-I by HIV-1 Nef in primary

CD4+ T cells was in direct conflict with other reports.

PI3K activity had no effect on Nef-mediated downregula-

tion of MHC-I in the leukemic T cell lines Jurkat and CEM

or in U373 cells (Kasper and Collins, 2003; Larsen et al.,

2004). However, PIP3, the product of the class I PI3Ks,

is rapidly dephosphorylated by one of several D-3

(PTEN) or D-5 (SHIP-1 and -2) lipid phosphatases, attenu-

ating PI3K-stimulated signaling pathways (Deane and Fru-

man, 2004). Interestingly, Jurkat, CEM, and U373 cell lines
or VV:Nef and treated or not with PI-103 as above were incubated with mAb W6/32 (3 mg/ml) for 30 min and then chased for an additional 30 min, fixed,

and processed for immunofluorescence microscopy. Scale bar, 10 mm. Bottom: H9 CD4+ T cells were infected with VV:WT or VV:Nef (moi = 10, 8 hr),

then treated or not with PI-103 for 1 hr, and then analyzed by flow cytometry using mAb W6/32.
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Figure 2. Nef-Stimulated PI3K Activity Requires Nef EEEE65

and PXXP75

(A) Primary CD4+ T cells cultured in Il-7 were infected with VV:WT or

VV:Nef/f (moi = 10, 12 hr). Following Nef/f immunoprecipitation (shown

on western blot), the samples were treated or not with 0.1 mM PIK-23,

PI-103, or PIK-112 or with 10 mM LY294002 or DMSO for 10 min, and

Nef-associated PI3K activity was measured as described in the Exper-

imental Procedures.

(B) H9 CD4+ T cells infected with the indicated VV vectors (moi = 5, 8 hr)

were lysed, and Nef-associated PI3K was measured as described in

the Experimental Procedures. Bottom: Western blot showing the ex-

pression of Nef/f constructs.
124 Cell Host & Microbe 1, 121–133, April 2007 ª2007 Elsevie
lack PTEN (Figure 1C). Consistent with the absence of

PTEN, Jurkat cells contain inordinately high levels of

PIP3, an otherwise low-abundance and transiently pro-

duced phosphoinositide (Astoul et al., 2001). Therefore,

we speculated that, in the absence of a PIP3 phosphatase,

transient inhibition of PI3K activity would marginally affect

PIP3 levels, thus negating the pharmacologic inhibition of

PI3K-dependent HIV-1 Nef-mediated MHC-I downregula-

tion. To test this possibility, we expressed HIV-1 Nef in

U373 cells in the absence or presence of LY294002, and

in agreement with others (Larsen et al., 2004), we found

that the inhibitor had no effect on MHC-I downregulation

(Figure 1D). We then asked whether rescue of PTEN ex-

pression in U373 cells would restore sensitivity of the

Nef-mediated MHC-I downregulation pathway to

LY294002. Accordingly, we found that LY294002 inhibited

Nef-mediated MHC-I downregulation in PTEN-rescued

U373 cells (Figure 1D).

Our determination that HIV-1 Nef requires a PI3K in

U373 cells led us to ask whether PI3K activity is required

for Nef to downregulate cell-surface MHC-I in H9 CD4+

T cells, which like primary CD4+ T cells are replete with ex-

pression of PTEN and other PIP3 phosphatases

(Figure 1C). Accordingly, the panselective inhibitor

LY294002 and the class I PI3K inhibitor PI-103 hindered

Nef-mediated downregulation of MHC-I in H9 cells

(Figure 1E), but not in cells treated with PTEN siRNA

(Figure S3). Because PI-103 inhibits mTOR and class I

p110 catalytic subunits, we tested whether PIK-23, a qui-

nazolinone purine derivative that selectively targets p110d

(Knight et al., 2006), could inhibit MHC-I downregulation.

Like PI-103, PIK-23 repressed Nef-mediated MHC-I

downregulation in H9 CD4+ T cells at all concentrations

tested (Figure 1E). The PI-103-sensitive, Nef-induced re-

distribution of MHC-I to the paranuclear region resulted

primarily from the downregulation of cell-surface mole-

cules as determined by antibody uptake and flow cytom-

etry (Figure 1E), as well as by the inability of Nef to block

delivery of newly synthesized MHC-I molecules to the

cell surface (Figure S4). Control experiments showed

that the amount of Nef expression per infected cell using

either the vaccinia or pseudovirus vectors did not ex-

ceed the amount of Nef expressed in HIV-1-infected cells

(Figure S5), supporting the physiologic relevance of

these results. Furthermore, expression of mutant proteins

that block the ARF6-dependent endocytic pathway—

including ARNOE156K, an inactive form of the PIP3 binding

ARF6 GEF, ARNO, and the ARF6 mutant, ARF6Q67L—

blocked Nef-mediated MHC-I downregulation in H9 cells

(C) H9 CD4+T cells expressing the indicated constructs were pro-

cessed for immunofluorescence microscopy, and MHC-I molecules

were detected with mAb W6/32 as described in the legend to

Figure 1E. Scale bar, 10 mm.

(D) Replicate plates of H9 CD4+ T cells infected with VV:WT or with VV

recombinants expressing the indicated proteins (total moi = 5, 8 hr)

were treated or not with 10 mM PP2 or, following immunoprecipitation

with mAb M2, with the indicated PI3K inhibitors as described in (A) and

then analyzed for PI3K activity. Error bars represent the mean ± SD of

three independent experiments.
r Inc.
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Figure 3. Nef PXXP75 Recruits an SFK at the TGN

(A) A7 cells were infected with VV recombinants expressing the indicated proteins (total moi = 10, 16 hr) and were harvested, Nef constructs were

immunoprecipitated from the membrane fractions with mAb M2, and coprecipitating Hck was detected by western blot. Bottom: Western blot show-

ing expression of Hck, Nef, and the PACS-1 constructs.

(B) Left: Images of HeLa-CD4+ cells coexpressing Hck-eCFP with Nef-eYFP or NefAxxA-eYFP were acquired using filters for CFP (lower left), YFP

(lower right), and FRET (data not shown). FRETC (top) was calculated as described in the Experimental Procedures and is presented as a quantitative

pseudocolor image with the corresponding pseudocolor scale (bottom). Scale bar, 20 mm. Right: Difference in FRETC between samples expressing

Nef-YFP or NefAXXA-YFP. Error bars represent the mean ± SD of two independent experiments (n = 20).
(Figure S6). Thus, HIV-1 Nef requires a PI3K-stimulated,

ARF6-controlled endocytic pathway to efficiently downre-

gulate cell-surface MHC-I in CD4+ T cells lines, and a func-

tional PTEN is required to observe this effect.

Nef EEEE65 and PXXP75 Motifs Act Sequentially

to Stimulate Nef-Associated PI3K Activity

The ability of Nef to bind the p85 regulatory subunit of PI3K

(Linnemann et al., 2002), together with the requirement for

Nef EEEE65 and PXXP75 to promote MHC-I downregula-

tion by triggering the PIP3-dependent activation of an

ARF6-dependent endocytic pathway (Blagoveshchen-

skaya et al., 2002), raised the possibility that these two

Nef motifs combine to stimulate a Nef-associated PI3K

activity necessary to downregulate cell-surface MHC-I in

CD4+ T cells. To test this possibility, we first determined

if Nef recruited PI3K in primary CD4+ T cells. We ex-

pressed epitope (FLAG)-tagged Nef in IL-7-treated cells,

then measured the amount of coprecipitating PI3K activity

using an in vitro kinase assay (Figure 2A). In agreement

with the immunofluorescence data (Figure 1E), the copre-

cipitating PI3K activity was blocked by LY294002, PIK-23,

and PI-103, but not by PIK-112, demonstrating that Nef

recruited a class I PI3K in vivo (Figure 2A). We extended

these studies to H9 CD4+ T cells and found that Nef mu-

tants containing an EEEE65 / AAAA65 mutation (NefE4A),

which disrupts binding of Nef to PACS-1, or a PXXP75 /

AXXA75 mutation (NefAXXA), which blocks binding of Nef

to SH3 domain-containing proteins, including SFKs,

inhibited PI3K stimulation and MHC-I downregulation

(Figures 2B and 2C). In agreement with the requirement
Cell
for Nef EEEE65 binding to PACS-1 to efficiently downregu-

late cell-surface MHC-I (Piguet et al., 2000), we found that

the interfering mutant PACS-1S278A, which inhibits bind-

ing of PACS-1 to Nef (Scott et al., 2003), reduced the

amount of Nef-associated PI3K activity and inhibited

MHC-I downregulation in H9 CD4+ T cells (Figure 2D).

However, as PI3K binds to the C-terminal region of Nef

and not to the Nef PXXP75 SH3 domain-binding motif

(Linnemann et al., 2002), our results did not explain why

NefAXXA failed to stimulate PI3K. Nef PXXP75, but not

AXXA75, binds to SFKs, so we tested whether Nef-stimu-

lated PI3K activity required an active SFK. Accordingly,

we found that the SFK inhibitor PP2 blocked the stimula-

tion of Nef-associated PI3K activity (Figure 2D; see also

Figure 4A).

Nef EEEE65-Mediated Targeting Enables PXXP75 to

Bind Src Family Kinases

Our results suggested that the Nef EEEE65 and PXXP75

motifs cooperate with a PP2-sensitive SFK to stimulate

PI3K activity. Thus, Nef EEEE65 may enable Nef PXXP75

to bind an SFK, many of which localize to the TGN (Bard

et al., 2002; Carreno et al., 2000). To test this possibility,

we asked whether EEEE65 regulates association of Nef

with Hck (Figure 3A). We chose to examine Hck because

Nef binding activates Hck (Lerner and Smithgall, 2002),

and Hck is also required for rapid onset of HIV pathogen-

esis in transgenic mouse models (Hanna et al., 2001),

while interfering fragments of Hck containing the SH3 do-

main block MHC-I downregulation (Chang et al., 2001).

First, we coexpressed Hck with Nef or NefAXXA in cells
Host & Microbe 1, 121–133, April 2007 ª2007 Elsevier Inc. 125
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and, in agreement with an essential role for PXXP75 to bind

SFKs, we found that Nef, but not NefAXXA, coimmunopre-

cipitated Hck. Second, we coexpressed Nef and Hck with

PACS-1S278A or PACS-1, finding that PACS-1S278A

blocked the association of Nef with Hck on cell mem-

branes, while PACS-1 had no effect (Figure 3A).

To determine whether HIV-1 Nef binds to SFKs at the

TGN, we conducted an intermolecular FRET assay. We

coexpressed Hck-CFP in HeLa-CD4+ cells with Nef-YFP

or NefAXXA-YFP, which localize to the TGN and emit

a fluorescent signal with similar intensity (Figure 3B). To

detect the intermolecular FRET signal, we exposed the

cells to 436 nm light to excite Hck-CFP and measured

fluorescence of Nef-YFP or NefAXXA-YFP at 535 nm.

Only cells coexpressing Hck-CFP and Nef-YFP, but not

NefAXXA-YFP, revealed a positive paranuclear FRET sig-

nal, indicating that the Nef-YFP binds to Hck-CFP at the

TGN. Together, these results suggest that targeting to

the TGN enables Nef to then bind an SFK, which subse-

quently stimulates PI3K activity required for Nef to down-

regulate cell-surface MHC-I.

Nef Binding to SFK Increases Association with PI3K

Our determination that PP2 inhibits Nef-associated PI3K

activity and that Nef PXXP75 binds to TGN-localized

SFKs (Figures 2 and 3) suggested that bound SFKs en-

hance the recruitment of PI3K to Nef. In agreement with

this possibility, we found that coexpression of Hck with

Nef, but not NefAXXA, increased the amount of class I

PI3K regulatory subunit p85 that coprecipitated with Nef

and correspondingly increased the amount of Nef-associ-

ated PI3K activity (Figure 4A). Because Nef PXXP75 binds

and activates Hck (Lerner and Smithgall, 2002; and

Figure S7), we asked whether the increased association

of Nef with PI3K required SFK activity. We determined

that, indeed, treatment of the cells with PP2 or coexpres-

sion of Nef with a catalytically inactive Hck mutant (Hck-

KE; Lerner and Smithgall, 2002) blocked Hck activation

(Figure S7) and the increase in coprecipitating PI3K activ-

ity, suggesting that an active SFK bound to PXXP75 is re-

quired for Nef to stimulate recruitment of PI3K. The ability

of Hck-KE to block Nef-mediated PI3K stimulation agrees

with the report that a fragment of Hck containing the SH3

domain can block MHC-I downregulation in CD4+ T cells

(Chang et al., 2001). Next, we asked whether the associa-

tion of PI3K with Hck was dependent upon Nef expres-

sion. We immunoprecipitated endogenous PI3K from cells

that coexpressed Hck with Nef or NefAXXA and detected

coimmunoprecipitating Hck by western blot (Figure 4B),

finding that p85 coimmunoprecipitated Hck in the pres-

ence of Nef, but not NefAXXA. In addition to activating

Hck, Nef also directly activates Src and Lyn (Trible et al.,

2006). As Hck is most abundantly expressed in myeloid

cells, we asked whether Src, which is broadly expressed,

can similarly promote recruitment of PI3K to Nef. Accord-

ingly, we found Src stimulated the amount of PI3K as-

sociated with Nef, but not NefAXXA. It also stimulated

Nef-associated PI3K activity (Figure S8). Together, these
126 Cell Host & Microbe 1, 121–133, April 2007 ª2007 Elsevier
findings suggest Nef serves as a scaffold to link activated

SFKs to PI3K.

Nef-SFK Recruits ZAP-70 to Stimulate PI3K

The requirement for an active SFK bound to Nef PXXP75 to

stimulate PI3K activity suggested that a Nef-bound SFK

Figure 4. PI3K Recruitment by Nef Requires an Activated SFK

Bound to Nef PXXP75

(A) H9 CD4+T cells infected with VV:WT or recombinant VV expressing

the indicated proteins (moi = 6, 8 hr) were harvested, Nef proteins were

immunoprecipitated, and coimmunoprecipitated Hck and p85 were

detected by western blot. Coimmunoprecipitated PI3K activity was

quantified as described in the legend to Figure 2. PP2 (10 mM) was

added 2 hr prior to cell harvesting where indicated.

(B) H9 CD4+ T cells infected with VV recombinants expressing the in-

dicated proteins (moi = 6 total, 8 hr) were harvested, and p85 was im-

munoprecipitated from the extracts. Coimmunoprecipitated Hck and

Nef were detected by western blot.

Bottom (A and B): Western blot showing expression of Nef and Hck

and the amount of cellular p85.
Inc.
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Figure 5. Nef/SFK Recruits and Activates ZAP-70 to Stimulate MHC-I Downregulation

(A) Jurkat CD4+T cells infected with VV:WT or recombinant VV expressing the indicated proteins (moi = 10, 8 hr) in the absence or presence of PP2 (10

mM) were harvested, and pY292ZAP-70 pY319ZAP-70 were detected by western blot. Bottom: Western blot showing expression of the Nef constructs

and the amount of cellular ZAP-70 and actin.

(B) 293T cells expressing ZAP-70 were infected with VV recombinants expressing the indicated proteins and were harvested, Nef proteins were im-

munoprecipitated, and coimmunoprecipitated phospho-ZAP-70 was detected by western blot. Bottom: Western blot showing expression of the Nef,

Hck, and cellular ZAP-70.

(C) Replicate plates of Jurkat, JurkatP116, or JurkatP116.c139 cells were infected with VV:WT or VV:Nef/f (moi = 10, 8 hr). Nef was immunoprecip-

itated, and coimmunoprecipitating ZAP-70 and p85 were detected by western blot. The amount of coimmunoprecipitated PI3K activity was quantified

as described in the legend to Figure 2. Top: Western blot showing the expression of Nef constructs and cellular ZAP-70 and p85.

(D) Jurkat, JurkatP116, or JurkatP116.c139 cells were infected with VV:WT or VV:Nef (moi = 10, 4 hr). The cells were fixed and stained with anti-MHC-I

mAb W6/32 (scale bar, 10 mm). Bottom: Replicate cell cultures were stained with mAb W6/32 and processed for flow cytometry as described in the

Experimental Procedures.
may directly phosphorylate PI3K. Yet we failed to detect

phosphotyrosine on the p85 regulatory subunit that coim-

munoprecipitates with Nef, suggesting that an activated
Cell H
SFK bound to Nef is necessary but not sufficient to stimu-

late PI3K. We thus sought to identify a substrate of the

bound SFK that would stimulate PI3K. Recent studies
ost & Microbe 1, 121–133, April 2007 ª2007 Elsevier Inc. 127
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Figure 6. siRNA Depletion of PACS-1 and ZAP-70/Syk Block MHC-I Downregulation in H9 and Primary CD4+ T Cells and in Prom-

onocytic TF-1 Cells

(A) H9 CD4+ T cells were nucleofected with pmaxGFP and either a control siRNA (scr) or siRNAs specific for ZAP-70 or PACS-1. After 60 hr, cells

expressing GFP were collected by FACS, and the amounts of PACS-1, ZAP-70, and actin were determined by western blot.

(B) H9 CD4+ T cells from (A) were infected with VV:WT or VV:Nef (moi = 10, 5 hr) and fixed, and MHC-I molecules were stained with mAb W6/32. Scale

bar, 10 mm.

(C) Primary CD4+ T cells isolated from a healthy donor were cultured in IL-7 and then nucleofected with a control siRNA (scr) or with siRNAs specific for

ZAP-70 or PACS-1. After 60 hr, the cells were infected with VV:WT or VV:Nef (moi = 10, 16 hr) and analyzed by western blot.

(D) Primary CD4+ T cells from (D) were analyzed by flow cytometry using mAb W6/32. Similar results were obtained using Nef+ and Nef� pseudotyped

viruses (data not shown).

(E) TF-1 cells infected with VV recombinants coexpressing Hck with Nef or NefAXXA (moi = 10 total, 8 hr) were harvested, and Flag-tagged Nef or

NefAXXA were immunoprecipitated from the extracts. Coimmunoprecipitated Hck, Syk, and p85 were then detected by western blot. Bottom: West-

ern blot showing expression of Nef, NefAXXA, and Hck constructs and the levels of cellular Syk and p85.

(F) TF-1 cells were nucleofected with pmaxGFP and either a control siRNA (scr) or siRNAs specific for Syk or PACS-1. After 48 hr, cells expressing

GFP were collected by FACS and harvested, and the amounts of PACS-1, Syk, and actin were determined by western blot.

(G) TF-1 cells from (F) were infected with VV:WT or VV:Nef (moi = 10, 5 hr) and fixed, and MHC-I molecules were stained with mAb W6/32. Scale bar,

10 mm.
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show that SFK phosphorylation of Syk or ZAP-70 forms

a tyrosine motif that binds the C-terminal SH2 domain of

p85 to stimulate PI3K- and ARF6-dependent phagocyto-

sis (Moon et al., 2005; Zhang et al., 1998). We tested

whether Nef/SFK usurped ZAP-70 to stimulate PI3K and

found that Nef stimulated the tyrosine phosphorylation

of ZAP-70 at Tyr292, which is necessary for binding p85

(Figure 5A and Moon et al., 2005). By contrast, NefE4A,

NefAXXA, or treatment of Nef-expressing cells with PP2

failed to activate ZAP-70, suggesting that EEEE65 and

binding of an active SFK to Nef PXXP75 are essential for

ZAP-70 activation. We also asked whether Hck could in-

crease the association of Nef with ZAP-70, finding that

Hck, but not inactive Hck-KE, increased the association

of Nef with phosphorylated ZAP-70 (Figure 5B).

We then asked if ZAP-70 is required for Nef-mediated

stimulation of PI3K activity and for Nef to downregulate

cell-surface MHC-I. We expressed Nef in genetically

paired Jurkat-derived cell lines that either lack Syk/ZAP-

70 (P116 cells) or are rescued for ZAP-70 expression

(P116.c39 cells, Figure 5C, top), immunoprecipitated the

Nef molecules, and then quantified the amount of Nef-

associated PI3K activity (Figure 5C). In agreement with

our studies in H9 CD4+ T cells, we found that Nef associ-

ated with PI3K in Jurkat cells. However, Nef failed to asso-

ciate with PI3K in ZAP-70-deficient 116 cells. By contrast,

Nef coimmunoprecipitated PI3K in the ZAP-70-rescued

139 cells. We used the ZAP-70-deficient and -rescued

cell lines to determine whether ZAP-70 is required for

Nef to downregulate cell-surface MHC-I and found that

Nef failed to downregulate MHC-I in the ZAP-70-deficient

116 cells (Figure 5D). However, Nef downregulated cell-

surface MHC-I in the ZAP-70-rescued 139 cells. As these

experiments did not rely on PI3K inhibitors, results from

these Jurkat cells were not confounded by the lack of

PTEN.

siRNA Depletion of PACS-1 or ZAP-70 Inhibits

Nef-Mediated MHC-I Downregulation in Primary

CD4+ T Cells

To establish that our results demonstrating the impor-

tance of ZAP-70 for the Nef-mediated downregulation of

cell-surface MHC-I were not restricted to the Jurkat-

derived cell clones, we asked whether siRNA depletion

of ZAP-70 from H9 CD4+ T cells would similarly block

MHC-I downregulation. We treated H9 CD4+ T cells with

a control siRNA or with siRNAs that specifically depleted

ZAP-70 or PACS-1 (Figure 6A), then expressed Nef in

the siRNA-treated cells and measured MHC-I downregu-

lation (Figure 6B). Depletion of ZAP-70 or PACS-1 re-

pressed MHC-I downregulation, whereas the control

siRNA had no effect. Next, to test whether Nef requires

PACS-1 and ZAP-70 to downregulate MHC-I in primary

CD4+ T cells, we treated primary CD4+ T cells with a con-

trol siRNA or with siRNAs that deplete PACS-1 or ZAP-70

(Figure 6C), then infected the cells with VV:WT or VV:Nef

and measured downregulation of cell-surface MHC-I by

flow cytometry (Figure 6D). Depletion of either PACS-1
Ce
or ZAP-70 inhibited Nef from efficiently downregulating

MHC-I in primary CD4+ T cells.

Finally, whereas ZAP-70 is expressed principally in T

cells, its homolog Syk is broadly expressed in diverse

cell types, including macrophages, which, like resting

CD4+ T cells, constitute a long-lived HIV-1 reservoir (Ste-

venson, 2003). Therefore, we asked whether Nef can use

Syk in addition to ZAP-70 to stimulate PI3K. We deter-

mined that Nef, but not NefAXXA, associated with Hck,

Syk, and PI3K in TF-1 promonocytic cells (Figure 6E). Ac-

cordingly, we treated TF-1 cells with siRNAs that depleted

Syk or PACS-1 (Figure 6F). We then expressed Nef in the

cells and found that siRNA depletion of Syk or PACS-1

blocked Nef-mediated downregulation of MHC-I (Fig-

ure 6G). Similar results were obtained using heterologous

HeLa-CD4+ cells, which also express Syk (Figure S9). To-

gether, our results identify a novel Nef-SFK-ZAP-70/Syk-

PI3K pathway that downregulates cell-surface MHC-I

molecules in diverse HIV-1 target cells.

DISCUSSION

We identify a Nef-SFK-ZAP-70/Syk-PI3K signaling/traf-

ficking pathway that HIV-1 Nef employs to downregulate

cell-surface MHC-I. This pathway appears to be ubiqui-

tous, since interference with SFKs, Syk/ZAP-70, or PI3K

disrupts Nef-mediated MHC-I downregulation in all cell

types examined that express a functional PIP3 phospha-

tase, including primary CD4+ T cells (Figures 1, 5, and 6

and Figures S3 and S9). Whereas SFK activation is usually

triggered by C-terminal dephosphorylation, which relieves

interdomain interactions that mask the active site, HIV-1

Nef overrides these inhibitory interactions by direct bind-

ing of its PXXP75 motif to the SH3 domain on Hck, thereby

unmasking the catalytic domain independent of dephos-

phorylation (Lerner and Smithgall, 2002). Recent studies

show that this mode of Nef-mediated SFK activation

also includes activation of Lyn and Src (Trible et al.,

2006), supporting a role for Nef to directly activate SFKs

expressed in multiple cell types. Interestingly, although

Hck and Src have prominent roles at the plasma mem-

brane, pools of these SFKs are present in other cellular

compartments, including the Golgi/TGN (Bard et al.,

2002; Carreno et al., 2000). Thus, Nef EEEE65, which di-

rects binding to PACS-1, enables Nef PXXP75 to bind

and directly activate SFKs sequestered in TGN-associ-

ated reservoirs. Our determination that PACS-1S278A,

PP2, and Hck-KE block the Nef-mediated stimulation of

PI3K in multiple cell types, whereas expression of Hck or

Src promotes recruitment of PI3K to Nef, supports this

model (Figures 2, 4, and 5 and Figure S8).

Following activation, the Nef-associated SFK pro-

motes recruitment and activation of ZAP-70, which is re-

quired to stimulate the PI3K-dependent downregulation

of cell-surface MHC-I (Figures 5 and 6). In response to

T cell receptor (TCR) ligation, ZAP-70 is recruited to

phosphorylated immunoreceptor tyrosine-based activa-

tion motifs (ITAMs) present on the CD3z cytosolic do-

main, activating this Syk family kinase to phosphorylate
ll Host & Microbe 1, 121–133, April 2007 ª2007 Elsevier Inc. 129
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adaptor molecules that activate T cells (Deane and Fru-

man, 2004). We do not know if Nef directly binds ZAP-

70. Nef lacks an ITAM motif, suggesting that ZAP-70

does not bind by this method. Interestingly, however,

a mutant SIV Nef containing an ArgGln/TyrGlu substitu-

tion creates an ITAM motif that binds to and activates

ZAP-70, mimicking the TCR and costimulatory signals

that permit the aberrant and robust replication of the vi-

rus in unstimulated CD4+ T cells, followed by rapid death

of the host (Luo and Peterlin, 1997). The recent demon-

stration that SFK phosphorylation of ZAP-70 at the

non-YXXM motif pY292 promotes binding of ZAP-70 to

PI3K to increase receptor endocytosis suggests that

HIV-1 usurps components of this cellular PI3K signaling

pathway to stimulate MHC-I downregulation (Moon

et al., 2005). Moreover, the ability of tyrosine phosphory-

lated Syk to also bind p85 (Moon et al., 2005) supports

our determination that Nef can use Syk in place of

ZAP-70 to stimulate PI3K and downregulate cell-surface

MHC-I in cell types ranging from TF-1 promonocytic cells

to HeLa-CD4+ cells, which also express Syk (Figure 6

and Figure S9).

Our experiments identify the hierarchical role of the Nef

EEEE65 and PXXP75 motifs in controlling MHC-I downre-

gulation. Nef EEEE65 and PXXP75 combine to assemble

a Nef-SFK-ZAP-70-PI3K complex that stimulates the

ARF6-controlled endocytosis of cell-surface MHC-I,

whereas Nef M20 promotes delivery of the endocytosed

MHC-I to paranuclear compartments. The inability of Nef

to block delivery of newly synthesized MHC-I to the sur-

face of H9 CD4+ T cells (Figure S4) supports our model

that Nef triggers the downregulation of cell-surface

MHC-I. The recent determination that Nef M20 is required

for recruiting intracellular MHC-I to AP-1, which is neces-

sary for endosome-to-TGN trafficking, is also consistent

with our model (Roeth et al., 2004). However, our results

differ from those of others (Kasper and Collins, 2003;

Larsen et al., 2004), who reported that Nef-mediated

MHC-I downregulation was controlled by a PI3K-indepen-

dent mechanism and that Nef blocks delivery of newly

synthesized MHC-I to the cell surface. Several factors

may have contributed to these differing results. First,

these authors relied on PTEN-deficient cells to ascertain

the role of PI3K in Nef-mediated downregulation of

MHC-I, which possess inordinately high levels of PIP3

and thus respond poorly to PI3K inhibitors (Deane and

Fruman, 2004). The ability of PTEN to rescue sensitivity

of Nef-expressing U373 cells to LY294002 confirms the

shortcoming of these cell lines to study Nef’s role in HIV-

1 immunoevasion (Figure 1) and underscores the large

number of conflicting studies in T cell biology attributed

to the use of PTEN-deficient cell lines (Astoul et al.,

2001). Second, that cell-surface MHC-I is endocytosed

by an ARF6-dependent pathway and is not blocked by dy-

namin/AP-2 mutants (Blagoveshchenskaya et al., 2002;

Le Gall et al., 2000) may also have confounded elucidation

of this MHC-I downregulation pathway (Swann et al.,

2001). Third, in contrast to others (Williams et al., 2005),

we found that the inability of NefE4A and NefAXXA
130 Cell Host & Microbe 1, 121–133, April 2007 ª2007 Elsevier
mutants to downregulate MHC-I was due, at least in

part, to specific defects in the PI3K signaling pathway.

The various studies of Nef expression may also define

two physiologically relevant modes of MHC-I downregula-

tion—a signaling-dependent mode identified here, which

triggers downregulation of cell-surface MHC-I, and a stoi-

chiometric mode, which blocks transport of newly synthe-

sized MHC-I molecules to the cell surface (Kasper and

Collins, 2003; Roeth et al., 2004). Whether the two modes

of MHC-I downregulation reflect reservoir- or host cell-

activation-state-dependent activities of Nef warrants

further investigation.

The recent identification of isoform-specific PI3K inhib-

itors provides new strategies to combat disease. For ex-

ample, PI-103 constrains the growth of gliomas in vivo

(Fan et al., 2006). Thus, the ability of PI-103 to suppress

Nef-mediated downregulation of MHC-I in CD4+ T cells

(Figure 1) suggests that HIV-1 may be an additional target

for this novel inhibitor. Importantly, Nef induces macro-

phages to release chemokines, luring nonactivated T cells

and causing them to become permissive to the virus,

thereby creating a very long-lived HIV-1 reservoir unlikely

to be eradicated by HAART (Stevenson, 2003). Thus, the

ability of PI-103 to inhibit Nef-mediated MHC-I downregu-

lation in naive IL-7-treated primary CD4+ T cells suggests

a novel strategy to combat the virus (Figure 1). Interest-

ingly, whereas PI-103 is a multitargeted PI3K inhibitor, qui-

nazolinone purines, including PIK-23, are exquisitely se-

lective for p110d, which is largely restricted to

leukocytes. As mice lacking an active p110d are viable

(Okkenhaug et al., 2002), specifically targeting this PI3K

isoform may provide a novel approach to disrupt HIV-1

in leukocyte reservoirs without affecting PI3K activity in

other tissues.

The Nef-SFK-ZAP-70/Syk-PI3K axis that we report

here may have implications beyond solely controlling

MHC-I downregulation. The same Nef motifs controlling

MHC-I downregulation are also involved in PAK2 activa-

tion, in the blocking of T cell maturation, and perhaps in

MHC II-mediated antigen presentation. The Nef EEEE65

and PXXP75 SH3 motifs and PI3K are all required to acti-

vate PAK2, which further arms the HIV-1 antiviral coun-

terattack (Das and Jameel, 2005 and our unpublished

data). Similarly, Nef requires the Nef EEEE65 and

PXXP75 motifs to disrupt maturation of CD34+ thymo-

cytes (Stove et al., 2003), and PI3K inhibitors block the

Nef-induced increase in cell-surface levels of immature

MHC-II and FasL, raising the possibility that Nef turns

the host’s own apoptotic arsenal against itself, such

that infected cells kill the very same CD8+ CTLs that tar-

get them by Fas-FasL binding (Das and Jameel, 2005;

Peterlin and Trono, 2003; Zauli et al., 1999). Together,

our results explain the role of the Nef EEEE65 and

PXXP75 motifs for mediating HIV-1 immunoevasion and

potentially additional facets of HIV-1 disease by directing

the formation of a Nef-SFK-ZAP-70/Syk-PI3K multikinase

signaling complex in diverse cell types, and in doing so,

we suggest new strategies to block this pathway in the

treatment of AIDS.
Inc.
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EXPERIMENTAL PROCEDURES

Cells and Recombinant Virus

293T, HeLa-CD4+, A7 melanoma, U373 astrocytoma, and Jurkat CD4+

leukemic T cells were cultured as described (Blagoveshchenskaya

et al., 2002; Crump et al., 2003). Jurkat-derived P116 and P116.c139

cells (provided by A. Weiss) and H9 CD4+ T cells were cultured in

RPMI-1640 supplemented with 10% FBS. TF-1 promonocytic cells

were cultured in RPMI-1640 supplemented with 10% FBS and 2 ng/

ml GM-CSF (Sigma).

Naive CD4+ T cells were isolated from freshly drawn blood or from

leukapheresed cells donated by four healthy volunteers using

a MACS CD4+ T cell isolation kit (Miltenyi Biotec). The purity of the

CD4+ T cell population was verified by FACS using PE-conjugated

anti-CD4 (mAb Leu-3a, BD). Isolated cells were cultured in RPMI

1640 containing 10% FBS and supplemented with 2 ng/ml IL-7 for 4

days or treated with IL-2 (1 U/ml for siRNA studies or 5 U/ml for PI3K

studies; Sigma) and 1 mg/ml PHA (Sigma) prior to infection.

HIV-1 NL4-3 was grown and titered as described (Scholz et al.,

2005). Vaccinia virus (VV) expressing flag-tagged Nef, NefE4A,

NefAXXA, and NefAXXA-PI3K*, as well as PI3K*, ARF6, ARF6Q67L,

ARNO, ARNOE156K, Src, PACS-1, and PACS-1S278A were generated

and titered on BSC-40 cells as described (Blagoveshchenskaya et al.,

2002; Ely et al., 1994; Scott et al., 2003). VV expressing Hck or Hck-KE

cDNAs (provided by T. Smithgall) or ZAP-70 cDNA (provided by A.

Weiss) were prepared as described (Blagoveshchenskaya et al.,

2002). To produce the HIV pseudotyped viruses NL4-3DG/P-EGFP

and NL4-3DG/P-EGFP/D Nef, 293T cells were cotransfected with the

packaging vector pCMVDR8.2, pMD.G, which expresses VSV-G and

either pNL4-3DG/P-EGFP or pNL4-3:DG/P-eGFP/DNef (provided by

P. Klotman). At 48 hr postinfection, viruses were collected and titered

on 293T cells based on GFP expression. Cells were infected with NL4-

3DG/P-EGFP or NL4-3:DG/P-eGFP/DNef (moi = 5) in the presence of 6

mg/ml polybrene (Sigma).

PI3K Inhibitors and siRNA

PI-103, PIK-23, and PIK-112 (Knight et al., 2006), and LY294002 (Cal-

biochem), were used as indicated. For cell experiments, inhibitors

were added at 21–48 hr postinfection; cells were processed for flow

cytometry at 24–60 hr postinfection, depending upon the donor. Con-

trol (scr) siRNA and siRNAs specific for PACS-1, ZAP-70, Syk, and

PTEN (Dharmacon) were nucleofected into cells according to the ven-

dor’s instructions (Amaxa). In some experiments, cells were conucleo-

fected with pmaxGFP to enrich transfected cell populations by FACS.

FACS and Flow Cytometric Analysis

Where indicated, GFP+ cells were selected using a FACS Vantage flow

cytometer cell sorter. For flow cytometry, cells were washed and re-

suspended in FACS buffer (PBS [pH 7.2] containing 0.5% BSA and

0.1% NaN3). Cells were incubated with mAb W6/32 (1:4000) or mAb

BB7.1 (anti-HLA-A2.1, 1:400; BD) at 4�C for 1 hr. An isotype-matched

antibody was used as a negative control. Cells were then washed and

incubated with PE-conjugated donkey anti-mouse IgG (1:400; Jack-

son IR) at 4�C for 30 min. Cells were washed and analyzed by listmode

acquisition on a FACSCalibur (BD) using CellQuest acquisition/analy-

sis software (BD).

FRET Analysis

Nef-YFP and NefAXXA-YFP were constructed by subcloning the Nef

and NefAXXA cDNAs into peYPF-N1 (Clontech); Hck-eCFP was con-

structed by subcloning the Hck cDNA into peCFP-N1 (Clontech).

HeLa-CD4+ cells were cotransfected with pHck-eCFP and either

pNef-eYFP or pNefAXXA-eYFP (Fugene, Roche). After 24 hr, images

were captured using a 633 oil immersion objective lens and a cooled

CCD camera and recorded using MetaMorph software (Molecular Dy-

namics). To measure FRET, three images were acquired in the begin-

ning with a CFP filter set (lex 436/10 nm, lem 470/30 nm), followed by

a YFP filter set (lex 500/20 nm, lem 535/30 nm) and then a FRET filter
Cell H
set (lex 436/10, lem 535/30 nm). Images were background subtracted,

and the corrected FRET (FRETC) was obtained from the raw FRET im-

ages by subtracting the bleedthrough signals emitted through the CFP

and YFP channels from cells expressing Hck-CFP, Nef-YFP, or

NefAXXA-YFP alone on a pixel-by-pixel basis. The percentage of bleed-

through from the eCFP and eYFP fluorescent signals (typically 45%

CFP and 25% YFP) was determined by dividing the average intensity

of the image obtained using the FRET filter configuration by the aver-

age intensity of the image obtained using the CFP or YFP filter config-

uration, respectively. The difference in FRETC between cells express-

ing Nef-YFP or NefAXXA-YFP was quantified by the following formula:

[(mean pixel intensity)T�area] � [(mean pixel intensity)B�area]/[(mean

pixel intensity)C�area] � [(mean pixel intensity)B�area], where T =

TGN, C = cytosol, and B = background in the extracellular space.

Coimmunoprecipitation, Western Blot, and Antibody Uptake

Cells infected with the indicated VV recombinants were harvested in

PBS containing 1% NP40, protease inhibitors (0.5 mM PMSF and

0.1 mM each of aprotinin, E-64, and leupeptin) and phosphatase inhib-

itors (1 mM Na3VO4 and 20 mM NaF). Where indicated, cells were

treated with 10 mM PP2 (Calbiochem) or 5 mM LY294002 prior to har-

vesting. In some experiments, cells were harvested in PBS and inhib-

itor cocktails without detergent, and then 100,000 3 g membrane pel-

lets were collected and resuspended in PBS containing 1% TX-100

plus inhibitors. FLAG-tagged Nef constructs were immunoprecipitated

with mAb M2-agarose (Sigma), and coimmunoprecipitating proteins

were detected by western blot. The following antibodies were obtained

as indicated: mAb HA.11 (Covance); anti-Hck, anti-Syk, and anti-

SHIP-1 (Santa Cruz); anti-Src, anti-p85, anti-ZAP-70, and anti-SHIP-

2 (Upstate); anti-pY418 (Biosource); anti-phospho292ZAP-70 (BD);

anti-phospho319ZAP-70 and anti-PTEN (Cell Signaling); anti-actin

(Chemicon); anti-Nef (AIDS Research and Reference Reagent Pro-

gram, NIH); and anti-PACS-1(703) (Scott et al., 2006). Antibody uptake

using mAb W6/32 was performed as described (Blagoveshchenskaya

et al., 2002). Residual cell-surface-bound antibody was removed by

a brief acid strip (1% acetic acid, 0.5 M NaCl [pH 3.0]; 30 s) prior to

fixation.

PI3 Kinase Assay

Immunoprecipitates from H9 cells expressing the designated Nef con-

structs were resuspended in assay buffer (20 mM HEPES [pH 7.4], 30

mM MgCl2, and 20 mM ATP) and then incubated with 0.2 mg/ml PI

(Sigma) and 10 mCi [g-32P]ATP for 15 min at RT. Phospholipids were

extracted with an HCl, chloroform/methanol (1:1) solution, spotted

on TLC plates (Fisher), and separated in a solvent mixture composed

of chloroform/methanol/water/NH4OH (45:35:8.5:1.5). 32P-PIP was vi-

sualized by autoradiography and quantified by phosphorimage

analysis.

Immunofluorescence Microscopy

Cells were infected with the designated VV recombinants and either

fixed or pelleted (suspension cell lines) onto poly-L-lysine-treated cov-

erslips and then fixed with 4% paraformaldehyde and processed for

immunofluorescence. Images were captured using a 633 oil immer-

sion objective on a Leica DM-RB microscope and Hamamatsu

C4742-95 digital camera and processed with Scion Image 1.62.

Supplemental Data

The Supplemental Data include nine supplemental figures and can be

found with this article online at http://www.cellhostandmicrobe.com/

cgi/content/full/1/2/121/DC1/.
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