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Bioactive compounds are widely used to modulate protein function and can serve as important leads for drug development.
Identifying the in vivo targets of these compounds remains a challenge. Using yeast, we integrated three genome-wide gene-
dosage assays to measure the effect of small molecules in vivo. A single TAG microarray was used to resolve the fitness of strains
derived from pools of (i) homozygous deletion mutants, (ii) heterozygous deletion mutants and (iii) genomic library transformants.
We demonstrated, with eight diverse reference compounds, that integration of these three chemogenomic profiles improves the
sensitivity and specificity of small-molecule target identification. We further dissected the mechanism of action of two protein
phosphatase inhibitors and in the process developed a framework for the rational design of multidrug combinations to sensitize
cells with specific genotypes more effectively. Finally, we applied this platform to 188 novel synthetic chemical compounds and
identified both potential targets and structure-activity relationships.

Identifying the mechanism of action of bioactive compounds in vivo is
essential for chemical biology and drug discovery. To realize this goal,
a number of approaches using cell-based assays to carry out forward
chemical genetic screens in yeast have been developed. For example,
drug-induced haploinsufficiency profiling (HIP) was developed to
identify small molecules that target essential genes1,2. Similarly,
homozygous profiling (HOP) uses the yeast homozygous (or haploid)
deletion collection to identify genetic modifiers of drug resistance3,4.
Diverse multicopy suppression strategies have been described that
identify genes that confer resistance to chemical treatment when
overexpressed5–7. Other strategies rely on ‘guilt by association’—
inferring targets from a compendium of reference profiles (for
example, genetic interactions and gene expression)8–11.

Each method has limitations, and here we present a cost-effective
method that integrates three distinct assays with the goal of improving
the characterization of the bioactivity of small molecules and making
this technology accessible. Using a miniaturized screening procedure
in conjunction with a common barcode TAG microarray12,13, this
platform systematically examines the effect of both increasing and
decreasing gene dosage on chemical sensitivity. We demonstrate its
utility for small-molecule characterization with eight well-studied
chemical compounds with distinct mechanisms of action (Supple-
mentary Table 1 online). We successfully identified both known and
new molecular targets for several of these compounds and noted that

examining the effect of both increasing and decreasing gene dosage
was often required to distinguish the bona fide target from a longer list
of potential candidates. This multipronged approach, combined with
genome-wide drug combination screens, uncovered important in vivo
differences between the phosphatase inhibitors cantharidin and caly-
culin A. We also identified a previously uncharacterized gene, which
we dub CRG1 (cantharidin resistance gene 1), as a dose-dependent
regulator of resistance to cantharidin, a natural product isolated from
blister beetles. Extension of multicopy suppression profiling identified
a potential CRG1 ortholog in the fungal pathogen Candida albicans
(orf19.633), which underscores the flexibility of this assay and the
utility of small molecules for annotating gene function. We also used
this platform to identify and characterize drug-drug interactions.
Finally, we applied this platform to 188 synthetic chemical compounds
with no previously known biological activity. This discovery effort
uncovered several potential protein targets and revealed new structure-
activity relationships for these compounds.

RESULTS
A chemogenomics platform
The yeast deletion collection is a proven resource for chemical
genetics14. Each strain in this collection contains a unique
20-base-pair DNA tag that enables the fitness of individual strains
(from a heterogeneous pool) to be resolved simultaneously using an
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oligonucleotide array. Using a pooled strategy has a distinct advantage
over strain-by-strain experiments because it substantially reduces
compound usage and simplifies sample processing. Exploiting an
array that contains both tag and open reading frame (ORF) probes12,
we developed a chemogenomics platform to resolve the fitness of
strains derived from pools of (i) homozygous deletion mutants,
(ii) heterozygous deletion mutants and (iii) genomic library transfor-
mants (Fig. 1a). We refer to those screens that use the deletion pools
as deletion sensitivity profiling (DSP) and screens that use genomic
library transformants as multicopy suppression profiling (MSP). MSP
is a new genome-wide assay that screens DNA clone libraries compe-
titively to identify genes that confer resistance to compounds when
overrepresented. Traditional multicopy suppressor screens involve
cumbersome plating techniques and clone characterization5, but
more recently, a microarray-based approach was used to characte-
rize small-molecule modulators of the target of rapamycin (TOR)
pathway7. Here we apply a variation of this concept by using a high-
copy, random genomic library (rather than an inducible ORF library)

and a simplified means to amplify library clones (Supplementary
Fig. 1a,b online). We miniaturized and then validated this assay using
a mutant CDC28 that is specifically sensitive to inhibition by the ATP
analog 1-NM-PP1 (1) (see Supplementary Fig. 1c–e and Supple-
mentary Methods online).

Integrating gene-dose assays improves target identification
Several studies have demonstrated that increasing or decreasing the
abundance of a small molecule’s target will directly affect the sensi-
tivity of the cell to that small molecule4–7,15,16. We applied both DSP
and MSP to eight reference compounds that have distinct mechanisms
of action (Supplementary Table 1). The results are presented such
that each ORF is represented as a vector in a Cartesian plane whereby
the y coordinate represents the level of multicopy suppression and the
x coordinate represents the level of deletion sensitivity in response to
chemical exposure (Fig. 1b). Vector analysis17 was used to identify
strains (colored red or blue) that were significant in both assays (see
Methods). The plots are divided into eight different sectors to

Figure 1 An integrated chemogenomics screening

platform. (a) Illustration of the chemogenomic

platform that interrogates three different yeast

pools with a single TAG4 array. A homozygous

deletion pool (n ¼ 4,990), a heterozygous

deletion pool (n ¼ 1,145) and a pool of genomic

library transformants (n B 4,700) are each

challenged with a compound of interest (X). The

heterozygous deletion pool represents only those

genes that are essential for viability or for which

homozygous deletions could not be constructed

systematically (see Methods). Barcode sequences

are isolated and amplified from deletion strain

pools, and genomic DNA inserts are isolated and

amplified from the library transformants. Labeled
products are then hybridized sequentially to the

same TAG4 array. (b) Genes directly related to a drug’s mechanism of action are predicted to alter drug resistance when deleted or overexpressed. Genes that

confer both resistance when overexpressed and sensitivity when deleted are more likely to be directly related to the drug’s mechanism of action.
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Figure 2 Data integration improves small-molecule target

prediction. (a–c) Chemical structures (left) and MSP versus DSP

plots (right) for methotrexate (a), fluconazole (b) and rapamycin

(c). For each ORF, the average Z-score of fold change derived

from MSP (representing suppression) and DSP (representing

sensitivity) is plotted on the y and x axis, respectively. Strains

that meet a false discovery rate threshold of 0.05 are colored
red for heterozygous deletion strains and blue for homozygous

deletion strains.
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represent different response patterns; in this study, we focused on
three sectors in particular. The green sector identifies genes that are
either bona fide suppressors or genes that are linked to these
suppressors (genomic clones often contain multiple genes) but that
do not cause sensitivity when deleted. The red sector identifies genes
that are sensitive to the chemical when deleted (homozygous or
heterozygous) but are not multicopy suppressors. The yellow sector
contains genes that result in sensitivity when deleted and result in
suppression when overexpressed. Essential genes (red) in this sector
represent potential targets, whereas non-essential genes (blue) repre-
sent genetic modifiers of drug resistance.

Methotrexate (2), fluconazole (3) and rapamycin (4) are widely
prescribed drugs with well-characterized targets and complex mechan-
isms of action. Methotrexate inhibits folic acid biosynthesis by
targeting dihydrofolate reductase (encoded by DFR1)18. Fluconazole
inhibits ergosterol biosynthesis by inhibiting the cytochrome P450
lanosterol 14a-demethylase encoded by ERG11 (ref. 19). Rapamycin
acts by binding to the immunophilin FKBP12, and together, the
FKBP12–rapamycin complex binds to and inhibits the TOR pro-
teins20. Consistent with these studies, our experiments identified
DFR1, ERG11 and TOR2 as both haploinsufficient and multicopy
suppressors of methotrexate, fluconazole and rapamycin, respectively
(Fig. 2). We note that in all cases, integrating deletion sensitivity with
multicopy suppression greatly refined the list of potential targets. For
example, in each case, the most sensitive deletion strain determined by
DSP did not represent the respective target (although the bona fide
target was always one of the top ten most sensitive strains). Consistent
with previous reports, an FPR1 heterozygous mutant was moderately

resistant to rapamycin (see Methods), whereas FPR1 overexpression
did not modify rapamycin sensitivity7,21. Genome-wide results for
methylmethane sulfonate (MMS, 5), latrunculin A (6) and nocodazole
(7) are presented in Supplementary Figure 2a–c online.

Surprisingly, we found by sequencing that the major DNA fragment
obtained following an MSP screen contained not the full-length TOR2
gene but rather only the C-terminal portion of the genes EAP1 and
TOR2 (Supplementary Fig. 2d). Because this C-terminal fragment of
the TOR2 gene included the FKB12–rapamycin binding domain
(FRB), this result implied that overexpression of this domain alone
is sufficient to confer rapamycin resistance. We tested this hypothesis
directly by expressing a fragment of TOR2 lacking the FRB domain
and showed that loss of the FRB domain abolishes rapamycin
resistance (Supplementary Fig. 2d). Though this observation is not
surprising, it underscores a benefit of performing MSP with DNA
fragments—that is, it is useful for defining the ligand binding sites
of proteins.

Cantharidin and calyculin A have distinct effects in vivo
Cantharidin (8) and calyculin A (9) are naturally occurring toxins that
each inhibit both type I (PP1) and type IIA (PP2A) protein phos-
phatases22–24. These inhibitors have modest in vitro specificity for each
protein, with cantharidin being more selective for PP2A (ref. 25). We
screened both compounds using our integrated platform and found
that Glc7, the only essential type I protein phosphatase in yeast, is
haploinsufficient in both cantharidin and calyculin A. Notably, over-
expression of GLC7 conferred resistance to calyculin A but not
cantharidin (Fig. 3a,b). These results were confirmed using isogenic
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Figure 3 Cantharidin and calyculin A have distinct effects in vivo. (a,b) Chemical structures (left) and MSP versus DSP plots (right) for cantharidin (a) and

calyculin A (b). (c) The relative affinity of calyculin A and cantharidin for Glc7 was measured using a microcystin competition assay. Cell lysates from yeast

expressing Glc7myc were pre-incubated with buffer, calyculin A, microcystin, cantharidin or okadaic acid before adding microcystin-conjugated agarose beads.

Proteins bound to the beads were isolated, separated by SDS-PAGE and immunoblotted with an anti-myc mouse monoclonal antibody and horseradish

peroxidase (HRP)-labeled goat anti-mouse secondary antibody. (d) Three different glc7 alleles, defective in nuclear (glc7-127, glc7-129) and cytoplasmic

(glc7-109) pathways, were grown in the presence of cantharidin and calyculin A, and their doubling times are presented ± s.d. (n ¼ 3). (e) A C. albicans

genomic library was transformed into S. cerevisiae (BY4743). Transformants were pooled and grown in the presence of calyculin A and cantharidin.

Recovered inserts were hybridized to a C. albicans expression array. The fold ratio (log2 (treatment/control)) of each ORF is plotted on the y axis and
arranged by its annotated genomic location on the x axis. The red dashed line is the fold-change cutoff (log2 1.6) used to identify each significant suppressor

locus. Area highlighted in green corresponds to the identified suppressor locus. (f) orf19.633 and CRG1 were cloned into the high-copy plasmid pRS426,

transformed into BY4743 and grown in the presence and absence of cantharidin (100 mM). Doubling times were normalized to growth of each strain in

DMSO control ± s.d. (n ¼ 3).
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cultures (Supplementary Fig. 3a online). Next, we used an in vitro
assay to measure direct binding of each inhibitor to Glc7 by testing the
ability of each inhibitor to disrupt the interaction between Glc7 and
microcystin-LR (10), a non-cell-permeable inhibitor of Glc7 (ref. 26).
These results revealed that calyculin A, but not cantharidin, is an
effective competitor for Glc7 binding (Fig. 3c). Collectively, these
results suggest that calyculin A is a direct inhibitor of the yeast Glc7
protein in vivo.

Cantharidin and calyculin A represent the most mechanistically
similar compounds in our reference set (Supplementary Table 1).
These in vitro data are not, however, supported by hierarchical
clustering of the deletion sensitivity profiles, which revealed that the
cantharidin and calyculin A profiles are among the most dissimilar in
our dataset (Supplementary Fig. 3b). The difference between the two
profiles is also reflected by the functional enrichment of strains that
are sensitive to each compound (Supplementary Fig. 3c). These
results underscore differences between the in vivo effects of these
two phosphatase inhibitors. Further inspection of their deletion
sensitivity profiles revealed that each compound identified different
GLC7-related genes. For example, strains heterozygous for compo-
nents of the APT (associated with Pta1) complex (PTA1, SWD2), an
essential subcomplex of the yeast cleavage and polyadenylation factor
(CPF)-containing complex (holo-CPF)27,28 that includes Glc7, were

sensitive to both compounds. In contrast, GLC7 is also known to
promote cell wall integrity, bud morphology and polarization of the
actin cytoskeleton through the phosphokinase C (PKC)-regulated
SLT2 mitogen-activated protein (MAP) kinase pathway29, and strains
deficient in various components of PKC signaling (BCK1, SLT2,
RLM1) were uniquely sensitive to cantharidin. In an independent
confirmation of the observed genome-wide differences, we found that
three glc7 alleles, each known to affect different GLC7-dependent
processes30–32, were differentially sensitive to each inhibitor (Fig. 3d).
glc7 alleles defective in nuclear pathways (glc7-127, glc7-129) were
more sensitive to either compound compared with a glc7 allele that is
defective in cytoplasmic function (glc7-109) (Fig. 3d). This allele
specificity is consistent with the enrichment of nuclear functions
(mRNA processing and chromatin modification) that we observed
in the genome-wide deletion sensitivity screens. More importantly,
glc7-129 was more sensitive to cantharidin than glc7-127, whereas the
opposite was true for calyculin A (Fig. 3d).

DSP of cantharidin showed that homozygous deletions of
YHR209W (CRG1), a non-essential gene encoding a putative
S-adenosylmethionine (SAM)-dependent methyltransferase of un-
known function, sensitized yeast to cantharidin (Fig. 3a). This gene
was also haploinsufficient in cantharidin33 and was an effective
multicopy suppressor of cantharidin sensitivity (Fig. 3a and
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Figure 4 Mechanistic insights into drug interactions. (a) Left,

heatmap representing inhibition (area under the growth curve)

by cotreatment of cantharidin and calyculin A. Right, interaction

dose-response matrix representing the degree of synergy

between cantharidin and calyculin A. Cells are colored according

to the deviation of the observed response to the double

treatment from that predicted by the single drug responses.

Representative growth curves for (i) an additive pair of drug

concentrations and (ii) a synergistic pair of drug concentrations.

The best-fit shape model assigned to this drug combination was

potentiation (Supplementary Methods). The asterisk indicates

the concentration at which the cantharidin-calyculin A cocktail

DSP screen was performed. (b) Venn diagram illustrating the

number of strains identified as (i) sensitive in both single drug

and cocktail screens, (ii) sensitive only in the cocktail screen

and (iii) sensitive only in the single drug screen. Four different
pairs of concentrations for cantharidin and calyculin A ((0 mM,

0 mM), (33 mM, 0 mM), (0 mM, 1.6 mM) and (33 mM, 1.6 mM))

were screened using DSP. We classified a strain as sensitive to

the single drug treatment if it was sensitive to either cantharidin (100 mM) or calyculin A (2.5 mM). (c) Heatmap representing strain sensitivity (blue to

yellow) and drug interaction (yellow to red) for the top 20 deletion strains exhibiting synergistic interactions. (d) An interaction network with nodes colored

(white to red) by degree of drug synergy as quantified by e. Gray nodes represent strains for which e values could not be accurately assigned (see Methods).

(e) Modules representing protein complexes with the highest average synergy score S.
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Supplementary Fig. 4 online). Homology comparisons revealed that
CRG1, like other SAM-dependent methlytransferases, is poorly con-
served outside of a highly conserved structural fold34. To identify a
functional homolog of CRG1, we modified MSP by introducing a
C. albicans genomic library into Saccharomyces cerevisiae to generate a
pool of multicopy transformants. This pool was grown in the presence
of calyculin A and cantharidin, and resistant clones were identified by
hybridization to C. albicans expression arrays. Consistent with our
screens using a S. cerevisiae library, the C.
albicans ortholog of GLC7 (orf19.6285) was
identified as the major suppressor of calyculin
A–induced sensitivity (Fig. 3e). The predo-
minant suppressor clone identified in the
presence of cantharidin contained four
genes of unknown function (Fig. 3e). The
highest scoring gene in this clone (and indeed
the entire experiment) was orf19.633, anno-
tated as a putative methyltransferase with no
ortholog in S. cerevisiae based on sequence
similarity35. Nonetheless, the methyltransfer-
ase domain shared between CRG1 and
orf19.633 suggests that they are functional
homologs, and indeed a clone that contained
only orf19.633 conferred even greater can-
tharidin resistance than a clone containing
S. cerevisiae CRG1 (Fig. 3f).

Mechanistic insights into drug interactions
Because cantharidin and calyculin A disrupt
distinct but related aspects of cell physiology,
we examined the effect of treating cells with
both compounds simultaneously. We quanti-
fied the degree of interaction across a
dose-response matrix surface using a Bliss
interaction model36 and found that the

combination of cantharidin and calyculin A was highly synergistic
compared with the combination of cantharidin and seven other
compounds (Fig. 4a and Supplementary Fig. 5 online). Of four
previously described shape models37, potentiation, which describes a
combination where one drug’s curve is shifted with a power-law slope
p above an enhancer concentration YPOT (ref. 37), best described the
relationship between cantharidin and calyculin A (Fig. 4a). In this
case, cantharidin strongly potentiated calyculin A with P ¼ 0.84 and
Ypot ¼ 41 mM (Supplementary Methods).

To identify gene deletions that specifically sensitized cells to this
drug cocktail, DSP was performed in diluent only (DMSO), canthar-
idin, calyculin A and a cocktail of cantharidin and calyculin A. At the
same significance cutoff (false discovery rate o 0.1), fewer strains were
sensitive to the cocktail (n ¼ 114) compared with the combined
number of strains sensitive to either compound at the equivalent
inhibitory concentration (n ¼ 149) (Fig. 4b and Supplementary
Fig. 6a online). Notably, the cocktail screen also identified additional
strains that were not identified by either single-drug treatment
(n ¼ 26). We next calculated the deviation of the observed fitness
from the expectation (of the Bliss model), e (where e ¼ WXY – WX �
WY), for each deletion strain using the array results for single- and
double-drug treatments (see Methods). Consistent with the effect on
wild type at the selected concentrations, the distribution of e values is
centered at zero, which indicates that the effects of each drug combine
predictably for most deletion strains (Supplementary Fig. 6b). The
20 heterozygous and 20 homozygous deletion strains with the smallest
(most negative) e scores are listed in Figure 4c. These represent
gene deletions that sensitize the cell to the cantharidin–calyculin
A cocktail. We found that the top 1% of sensitized strains
(n ¼ 56) were significantly enriched for strains that are sensitive to
calyculin A alone, compared with cantharidin alone (chi-square
P o 6.3 � 10–10; Supplementary Fig. 6c). In agreement with our
dose-response surface analysis, this suggests that cantharidin acts by
potentiating the effect of calyculin A.

Table 1 20 gene-compound pairs with the highest combined

DSP-MSP activity scores

Strain Compound Activity score Strain

1 CRG1 Cantharidin (8) 2,082.2 hom

2 TOR2 Rapamycin (4) 1,106.9 het

3 ERG11 Fluconazole (3) 1,089.1 het

4 SEC14 4130-1278 (11) 1,011.7 het

5 ERG11 4513-0042 (13) 702.6 het

6 GLC7 Calyculin A (9) 527.9 het

7 ERG24 4092-0821 (18) 463.4 hom

8 PDC1 0086-0128 (19) 354.4 hom

9 SOD2 3013-0144 (20) 324.9 hom

10 HEM1 0986-0246 (21) 316.5 het

11 PDR1 3937-0236 (22) 314.4 hom

12 TRP2 1486-1328 (23) 306.5 hom

13 DFR1 Methotrexate (2) 280.3 het

14 ERG3 0958-0271 (24) 212.1 hom

15 HEM15 1120-0019 (25) 201.5 het

16 YAP1 0987-0079 (26) 179.7 hom

17 RPN4 0988-0037 (27) 173.5 hom

18 HYP2 4466-0038 (28) 168.4 het

19 STP1 0109-0045 (29) 161.6 hom

20 PAB1 1326-1318 (30) 152.5 het
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We next mapped the e scores of strains described in Figure 4c
(sensitive to either compound or the cocktail) to a network compris-
ing 15 types of interactions as defined by BioGRID38 (Fig. 4d). We
found that particular neighborhoods of the network were enriched
with genes having negative e scores. In addition, searching this
network for highly connected modules of protein-protein interactions
(see Methods) identified several modules with an average e score
of less than zero (Fig. 4e). These results illustrate that drug

cocktails can specifically target genetically unique cells within a
heterogeneous population.

Characterization of new bioactive compounds
To demonstrate the utility of these integrated assays in understanding
the bioactivity of a more challenging chemical set, we screened 188
synthetic chemical compounds with uncharacterized activities. These
compounds were selected from a library of compounds that have
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inhibitory activity against yeast. An activity score (Supplementary
Methods) designed to identify genes for which copy number
changes conferred potent and specific sensitivity in DSP and potent
and specific resistance in MSP was calculated for each compound-gene
pair, thus yielding a matrix of 4106 activity scores. Many of
the known interactions from our reference compounds were among
the highest scores in this matrix (Table 1), which suggests that the
reference compounds were specific for their targets. The highest
activity score among the synthetic compounds was for 4130-1278
(11) and the gene SEC14, which encodes a conserved phosphatidyli-
nositol/phosphatidylcholine transfer protein (Table 1 and Fig. 5a).
These screen results were confirmed with isogenic cultures and
suggest that Sec14 is a target of 4130-1278 (Supplementary Fig. 7a
online). Moreover, SEC14 did not score highly in either MSP or
DSP with the other 195 compounds we screened, which indicates
that 4130-1278 was unique in its ability to target SEC14
(Fig. 5a). We also note that the second highest scoring compound
with activity against SEC14, 4534-1311 (12), shared moderate struc-
tural similarity with 4130-1278 (ECFP_4 Tanimoto coefficient, 0.2).

We also identified a potential new inhibitor of Erg11: 4513-0042
(13) (Table1 and Fig. 5b). 4513-0042 contains an azole ring, a
hallmark of many characterized Erg11 inhibitors, and specifically
identified ERG11 in both MSP and DSP assays (Fig. 5b).
Comparing the DSP and MSP activity score for ERG11 across all
196 compounds revealed that a number of compounds displayed
anti-Erg11 activity in either MSP or DSP alone but not in both. Only
4513-0042 and fluconazole displayed activity against Erg11 in
both assays.

Comparison of profiles to compound structure
We previously showed that compounds that share a common
substructure have similar chemogenomic profiles1. More recently, a
large-scale study showed that phenotype-based structure-activity rela-
tionships (SAR) can be derived using cytological phenotypes from
high-content screening39. We therefore sought to determine to what
extent chemical structural similarities are reflected in our DSP and
MSP results. For each compound, a circular molecular fingerprint was
defined using ECFP_4 descriptors. A similarity matrix based on
Tanimoto scores was used to describe the pair-wise relationships
between the 196 compounds screened. We also generated chemoge-
nomic profile similarity matrices, one for DSP and one for MSP, by
calculating the Pearson’s correlation between each pair of experiments.
Each matrix is presented as a heatmap with compounds ordered by
hierarchical clustering of the DSP profiles (Fig. 6a). We found the
relationship between chemical structure and profiling results to be
significant for both DSP (P o 5.53 � 10�13) and MSP (P o 1.2 �
10�5), with DSP exhibiting a higher correlation with structure than
MSP (Supplementary Fig. 7b). Nevertheless, it is evident from the
heatmaps that while some structurally similar chemicals produced
similar DSP and/or MSP results (red boxes), other structurally

dissimilar compounds also produced highly
correlated profiles (green boxes).

To examine how small changes in chemical
structure can affect function or bioactivity, we
compared Tanimoto similarities with DSP
profile similarities between each compound
pair. Using a Tanimoto structural similarity
score cutoff of Z0.3, we found that B80% of
the compound pairs with similar structures
show concordance in their chemogenomic
profiles, whereas B20% of the compound

pairs show discordance (Fig. 6b). Four exemplar discordant com-
pound pairs are shown in Figure 6b. Compounds k064-0027 (14) and
k064-0035 (15), for example, differ only in one position, but they
differ greatly in their respective DSP profiles. These compounds are
structurally similar to a family of 9-anilinoacridine derivatives that
includes amsacrine (m-AMSA, 16) (and its analogs); the derivatives
have been extensively studied as potential antitumor agents40.
m-AMSA has been shown to interact with DNA and also to inhibit
topoisomerase II (ref. 41). k064-0027 shared the greatest structural
similarity with m-AMSA among these derivatives (Table 2), and
comparison of DSP results for k064-0027, k064-0035 and three
other derivatives in our dataset showed that strains deficient in
DNA repair are sensitive only to k064-0027 (Fig. 6c). This observation
is consistent with the methyl ester group unique to k064-0027, as
quantitative structure-activity relationship (QSAR) analysis of 643
members of the 9-anilinoacridine family showed that electron-
donating groups are favored on the aniline ring42. Two of the
compounds that do not induce a DNA damage response (k064-0012
(17) and k064-0035) both contain two halogen substituents, and it is
known from the QSAR study42 that electron-withdrawing groups
reduce antitumor activity for this family of compounds. In addition
to having an electron-donating group instead of an electron-with-
drawing group, k064-0027 is also less lipophilic, having a calculated
logP of 5.5 compared with 6.14 for k064-0035. For comparison,
m-AMSA has a calculated logP of 4.00.

DISCUSSION
Bioactive chemical probes are useful biological tools and can be as
effective as mutants or antibodies for studying the functions of genes
and pathways relevant in human health. Here we describe an inte-
grated, miniaturized platform that comprehensively interrogates the
effect of increasing and decreasing individual gene dosage on drug
resistance using a single microarray to measure cellular fitness. Our
experiments with eight reference compounds and 188 compounds of
unknown activity validated the use of this platform for identifying
small molecule–target interactions. From a practical perspective,
extensibility is an essential feature of genome-wide assays, and
accordingly, we designed this suite of assays to be compatible with
existing protocols, reagents and devices. Additionally, miniaturization
is important for high-throughput screens where compounds, in
particular natural products, are limited in supply.

Much of the current cost of drug development can be attributed to
a poor understanding of the effects of potential drugs in vivo. The
practice of target-based drug discovery has indeed produced many
promising drug candidates that ultimately fail clinical trials due to
unanticipated side effects43. Systems-level approaches such as those
described here that measure small-molecule effects in an in vivo
context offer to better define the biological effects of potential
drugs. For example, the protein phosphatase inhibitors cantharidin
and calyculin A have similar activities in vitro; however, their deletion

Table 2 ECFP_4 Tanimoto coefficient similarity of 9-anilinoacridine derivatives to m-AMSA

Name 0986-0246 k064-0012 k064-0020 k064-0027 k064-0035 m-AMSA

0986-0246 1.00 0.43 0.62 0.57 0.67 0.38

k064-0012 1.00 0.43 0.38 0.43 0.42

k064-0020 1.00 0.47 0.54 0.36

k064-0027 1.00 0.69 0.53

k064-0035 1.00 0.41

m-AMSA 1.00
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sensitivity and multicopy suppression profiles are surprisingly dissim-
ilar (Fig. 3). An additional benefit of our approach is that all potential
targets are interrogated simultaneously and without bias. This
approach readily identified the therapeutic targets of several drugs
(Fig. 2). Our efforts with 188 previously uncharacterized synthetic
compounds, which we expect will be a valuable resource for future
experiments (and analysis), identified several potential interactions
with various cellular targets (Fig. 5). Though further chemical
modifications would be needed to confer the pharmacokinetic proper-
ties required for a therapeutic, compounds identified using this
methodology could prove to be excellent starting points for develop-
ing analogs with improved properties. In principle, these modifica-
tions could be directed in part by SAR studies similar to those
illustrated in Figure 6.

Using a randomly generated genomic library for MSP has several
key benefits. One is that it is readily adaptable to testing the genomes
of other organisms, provided an appropriate expression array is
available. We demonstrated this by identifying a putative functional
homolog of an uncharacterized and poorly conserved S. cerevisiae
gene (CRG1) in the fungal pathogen C. albicans (Fig. 3e,f). Given the
conservation between yeast and human genes, expression of human
complementary DNAs in yeast could prove useful in identifying
human drug targets.

We also demonstrate the utility of chemogenomic profiles for the
study of drug combinations. Understanding how drug combinations
affect cell physiology is essential for three reasons: (i) to predict
adverse drug interactions, (ii) to develop better strategies for designing
effective drug combination treatment regimens and (iii) to develop
chemical genetic strategies for studying cellular processes. Recent
advances in ‘combination high-throughput screening’ (cHTS)44,45

promise the identification of many drug combinations that
result in non-additive interactions. However, determining the
links between the observed drug interaction and the underlying
molecular mechanism is not straightforward. As a step toward
this goal, we showed that a genome-wide analysis of deletion strains
with drug combinations in the context of the underlying genetic
network enables the identification of processes that buffer the effects
of drug-drug combinations. Although not investigated in this
study, we also foresee the use of MSP to identify suppressors of
drug interactions.

In summary, integration of multiple genome-wide assays is
an effective way to use small molecules to dissect fundamental
cellular processes. Development of scalable technologies in
addition to those described here will be important—as will the
development of analysis tools that can integrate these genome-
wide datasets to piece together the complete spectrum of chemical
genetic interactions.

METHODS
Reagents. Methotrexate, rapamycin, MMS, nocodazole, cantharidin and flu-

conazole were purchased from Sigma-Aldrich. Calyculin A and latrunculin A

were purchased from BioMol. 1-NM-PP1 was chemically synthesized as

previously described46. The chemical diversity library was obtained from

ChemDiv. Each compound was dissolved in DMSO, with the exception of

rapamycin, which was dissolved in 90% ethanol, 10% Tween 20. All com-

pounds were stored at –20 1C until use.

Deletion pool construction and screening conditions. Deletion pool con-

struction was carried out as previously described3,12 with the following

modification. Only strains identified as essential for growth in rich medium,

sterile or deficient in mating were used to create the heterozygous deletion

pool. Pooled growth of the homozygous deletion pool and the heterozygous

deletion pool was carried out for 5 and 20 generations, respectively. Both pools

were inoculated at an optical density at 600 nm (OD600) of 0.02 and grown in

48-well microtiter plates (Nunc) in a volume of 700 ml and in compound

concentrations that inhibited pool growth by B10%. Cells were harvested by a

Packard Multiprobe II four-probe liquid-handling system (PerkinElmer). For

20-generation experiments, cells were maintained in logarithmic phase by

robotically diluting cultures every five doublings.

Multicopy pool construction and screening conditions. An S. cerevisiae

random genomic library constructed in a high-copy 2 mM expression vector

(YEplac195) was transformed into yeast (cdc28-as or BY4743) by a standard

lithium acetate method47 and selected on medium lacking uracil (URA–). After

3 d of growth, B106 transformants were pooled into medium containing 7%

DMSO, aliquoted and stored at –80 1C until use. A C. albicans genomic library

constructed in a high-copy 2 mM expression vector (pRS426)48 was purchased

from Open Biosystems. For both pools, frozen aliquots were thawed and

inoculated directly into URA– medium to an OD600 of 0.02 and a volume of

700 ml. Compound was added, and the pool was grown for five generations in

48-well microtiter plates (Nunc) at inhibitory concentrations of at least 50%

(IC50) and harvested the same way as described above.

Microarray analysis. Both DSP and MSP were analyzed using a high-density

oligonucleotide tag array manufactured by Affymetrix13. MSP for C. albicans

was analyzed using a custom high-density oligonucleotide genechip also

manufactured by Affymetrix49 (PN ¼ 510556). For both DSP and MSP,

barcode probe intensities were extracted and processed as previously

described12. Each array was mean normalized, and fold change (log2 control/

treatment) was calculated by comparing to a set of control arrays. Tags from the

homozygous pool were normalized separately from tags from the heterozygous

essential pool, as were the upstream tags (uptag) and downstream tags

(downtag). At least two biological replicates were performed for each of the

eight reference conditions. The log2 ratios of both tags were averaged to

generate a single score for each gene. For MSP, log2 ratios of intensities were

ordered by each ORF’s genomic location and analyzed using a sliding window

to identify loci that had at least two adjacent ORFs with log2 ratios Z 1.6.

Statistical analyses for identifying significant strains and activity scores are

further described in the Supplementary Methods. All raw and analyzed data

are available on the author’s website (http://chemogenomics.stanford.edu/HIP/

supplements/05chemo/).

Quantifying dose-response matrix drug interactions. For each drug, 1.25-fold

serial drug dilutions were performed in DMSO. Wild-type yeast (BY4743) were

grown overnight to saturation and diluted into YPD (yeast extract, peptone,

dextrose) medium to an OD600 of 0.2 and aliquoted in an 8 � 8 matrix (96-well

plate). Each drug combination pair was then added to yield the dose-response

matrix and grown using Tecan GENios microplate readers for up to 30 h. At

least two replicates were conducted for each growth condition. We used area

under the growth curve (AUGC) as a metric to capture both defects in growth

rate and carrying capacity. Each dose matrix was scored for drug interaction

e ¼ AUGCi,j – AUGCiAUGCj, where AUGCi,j represents the growth defect

conferred by treatment with drug i and drug j, and AUGCi and AUGCj

represent the growth defect conferred by single treatment of drugi and drugj,

respectively, at the same concentration normalized to no drug growth. The

e values for each replicate were averaged and the dose matrix was represented as

a heatmap using Matlab (MathWorks). For analysis of the morphology of the

response surfaces, we used shape models as previously described37. Detailed

methods describing this analysis can be found in the Supplementary Methods.

Quantifying deletion strain drug interactions. We used rankproduct analy-

sis50 to identify strains that were sensitive to each compound and the cocktail

(Fig. 4b). Log2 ratios were calculated pairwise for each control, and treatment

array and rank were sorted. The product of the ranks for each pair of arrays was

calculated. Significance was estimated using a permutation-based procedure.

Strains meeting a false discovery rate of 0.1 were mapped to the interaction

network shown in Figure 4d. For each strain x, the Z-scores for each condition

were then used to calculate ex ¼ Wx,cantharidin,calyculin A – Wx,cantharidin �
Wx,calyculin A to characterize the degree of drug interaction in that strain, where

Wx,y represents the Z-score for the log2 ratio for strain x in condition y. This
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was performed separately for the heterozygous and homozygous pools to

normalize for differences in the ratios between the two pools. We filtered strains

for which e could not be accurately assigned because the strain was highly

sensitive to either single drug condition or had low overall TAG intensity in the

control. To identify these strains, we calculated for each strain the maximum

possible e value by calculating emax,x ¼ Bgd – Wx,cantharidin � Wx,calyculin A, where

Bgd is the background intensity (B60) simulating that the strain is highly

sensitive to the cocktail. Strains for which emax is negative were excluded from

the analysis and are represented as gray nodes in Figure 4d.

Chemical descriptor annotation. ECFP_4 fingerprints were calculated using

Pipeline Pilot V6.1.1 (Scitegic), and logP values were calculated using

Molecular Operating Environment version 2007.09 (Chemical Computing

Group, Inc).

Note: Supplementary information and chemical compound information is available on
the Nature Chemical Biology website.
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Corrigendum: An integrated platform of genomic assays reveals 
small-molecule bioactivities
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Ronald W Davis, Guri Giaever, Robert P St Onge & Corey Nislow
Nat. Chem. Biol. 4, 498–506 (2008); published online 11 July 2008; corrected after print 17 September 2008

In the version of this article initially published, there was a space missing in the author name Robert P St Onge. The error has been corrected in 
the HTML and PDF versions of the article.
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