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The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an
essential regulatory network in eukaryotic cells. This network supports the flow of information from
sensors through signaling systems to effector molecules, and ultimately drives the phenotype and
function of cells, tissues, and organisms. Dysregulation of this process has severe consequences
and is one of the main factors in the emergence and progression of diseases, including cancer. Thus,
major efforts have been invested in developing specific inhibitors that modulate the activity of individ-
ual kinases or phosphatases; however, it has been difficult to assess how such pharmacological inter-
ventions would affect the cellular signaling network as a whole. Here, we used label-free, quantitative
phosphoproteomics in a systematically perturbed model organism (Saccharomyces cerevisiae) to de-
termine the relationships between 97 kinases, 27 phosphatases, and more than 1000 phosphoproteins.
We identified 8814 regulated phosphorylation events, describing the first system-wide protein phos-
phorylation network in vivo. Our results show that, at steady state, inactivation of most kinases and
phosphatases affected large parts of the phosphorylation-modulated signal transduction machinery,
and not only the immediate downstream targets. The observed cellular growth phenotype was often
well maintained despite the perturbations, arguing for considerable robustness in the system. Our
results serve to constrain future models of cellular signaling and reinforce the idea that simple linear
representations of signaling pathways might be insufficient for drug development and for describing
organismal homeostasis.
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INTRODUCTION

Protein kinases, and, to a lesser extent, protein phosphatases, are attractive
drug targets (1–5); however, although their respective catalytic activities
are well characterized, their functions in vivo remain relatively poorly un-
derstood. Despite extensive in vitro (6), in silico (7), or indirect in vivo
assays (8), our knowledge of the global relationships between kinases,
phosphatases, and their substrates remains fragmented (2). Even less is
known about the more downstream, indirect consequences of kinase ac-
tivity, making rational selection of suitable candidates for therapeutic in-
terventions difficult; consequently, many promising kinase inhibitors are
ultimately retired from development (9).

One promising approach for closing this knowledge gap is the
organism-wide, quantitative assessment of all phosphorylated proteins,
comparing phosphorylation status in wild-type cells to that in cells that
have undergone systematic perturbations of their kinases or phospha-
tases. Progress in phosphoproteomics technology has brought this goal
within reach by enabling the reproducible quantification of thousands of
phosphorylation sites in a single study (10–12). Although the throughput
is not yet sufficient to systematically address all 518 protein kinases and
147 protein phosphatases in human cells (13, 14), simpler organisms, such
as yeast, can be addressed. Yeast in particular is frequently used as a model
to study human diseases (15), including cancer, mitochondrial diseases,
and even neurological disorders caused by protein misfolding (16, 17).
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Although some signaling systems, such as the apoptotic machinery, are
absent in yeast, other parts of its signaling network display substantial
similarities to those in human cells (18, 19). Of the 161 kinases and phos-
phatases in yeast, 136 are conserved in humans at more than 30% amino
acid sequence identity (table S1), and some human signaling proteins can
even replace their yeast counterparts (20). Here, we used a combination of
phosphoproteomics measurements and computational methods (11) to de-
tect and quantify the system-wide responses in the yeast phosphoproteome
upon deletion or inhibition of most of its kinases and phosphatases.
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RESULTS

Experimental strategy
We developed an integrated experimental and computational strategy for
high-throughput comparative phosphoproteomic analysis in Saccharomyces
cerevisiae (Fig. 1), which consisted of the following steps. First, we sys-
tematically perturbed the kinase-substrate and phosphatase-substrate net-
works by selecting gene deletion mutants of the nonessential kinases or
phosphatases or, for some essential kinases, by generating mutants inhib-
itable by cell-permeable drugs, which are referred to as “analog-sensitive”
kinase strains (21). To minimize compensatory mutations that might accu-
mulate over time in the gene deletion strains, we freshly prepared all mu-
tant strains. To enable a statistical characterization of our observations, we
always grew, processed, and measured each perturbed strain in three inde-
pendent replicates, together with three replicates of wild-type, control
cells. Phosphopeptides were isolated from each sample (22, 23) and sub-
mitted to high-performance mass spectrometry to generate liquid chroma-
tography coupled to mass spectrometry LC-MS/MS phosphoproteome
maps. The triplicate phosphoproteome maps generated from each perturbed
or wild-type cell sample were annotated with the amino acid sequences of
the detected phosphopeptide features and were aligned with the algorithm
SuperHirn (24), which was followed by additional postprocessing (see Sup-
plementary Materials for details). The statistical significance of observed
changes in the perturbed states was then computed for each phosphopeptide
with the Corra software suite (25).

We assessed the reliability of our measurements and computational
data processing at two levels. First, we assessed the confidence of the phos-
phopeptide identifications generated by database searching, and second,
we assessed the reproducibility of detecting quantitative phosphopeptide
differences between wild-type and mutant strains. For the first check,
and to determine the reliability of our phosphopeptide identifications from
the peptide fragment ion spectra, we performed statistical analyses with
the PeptideProphet tool (26) and a decoy database strategy (27). From
these analyses, we found that a PeptideProphet probability cutoff of 0.9
corresponded to a false discovery rate (FDR) of ~0.038 (3.8%) (table S2),
which confirms that our chosen cutoff of 0.9 yielded an acceptably low
degree of incorrect peptide identifications, in particular because most
phosphopeptides were identified repeatedly in the context of this exten-
sive study.

We then used the statistical tool Corra (25), which supports an empir-
ical Bayesian alternative to the t test (28). The test improves the reliability
of conclusions in cases of large-scale testing. For each phosphopeptide
feature, the test provided a P value of the observed differences between
wild-type and mutant replicates. The P values were further corrected for
multiple testing according to the Benjamini and Hochberg procedure (29)
(see the Supplementary Materials). After this quantitative analysis step, we
chose an FDR threshold of 0.015 in conjunction with a minimum fold-
change requirement of log2 >1.5, both of which had to be met before we
would consider any phosphopeptide as reproducibly regulated. At this
www
threshold, nine comparisons between wild-type and lowest-impact kinase
mutants resulted in only a single or no phosphopeptide being designated
as regulated, which verified the validity of our selected criteria. On the
basis of these results, we concluded that our applied cutoffs ensured that,
despite a high sensitivity (fig. S1), only a minimal amount of noise entered
our analyses and that we achieved high reproducibility in the observed
regulatory events.

Overall, we attempted the analysis of 161 mutant strains of yeast. Of
these, 37 strains could not be analyzed because they were not viable, not
inhibitable, or otherwise not amenable to our procedure (table S1). In total,
we generated quantitative data for 116 gene deletion mutants and for an
additional 8 strains in which analog-sensitive kinases were pharmaco-
logically inhibited (table S1). Together, this corresponds to coverage of
78% of the theoretical kinase and phosphatase space in yeast and covered
Wild-type
yeast cells

Kinase or phosphatase
deletion mutants

Proteome isolation 
Protein digestion and phosphopeptide-enrichment
LC-MS/MS analysis and map creation

Fold-change (median, log2): P value:

Bioinformatics analysis

Wild-type abundance

IASPIQHEHDSGSR
P

Example:

1523.3 1240.6 1240.6

m/z

TR

-3.76 8 x 10-05

(phosphopeptide)

47.0 112.8 33.1Mutant ab. (∆Cla4)

Fig. 1. Integrated experimental and computational pipeline to determine in
vivo kinase-substrate and phosphatase-substrate relationships. Yeast ki-
nase and phosphatase genes were systematically deleted one by one
and the phosphoproteomes were systematically compared between mu-
tant and wild-type strains. To achieve this, for each mutant strain and
wild-type, we grew and processed three independent biological replicates
by proteome isolation, protein digestion with trypsin, phosphopeptide en-
richment by applying a TiO2 resin, and quantification and identification of
the phosphopeptides with LC-MS/MS. Observed phosphopeptide ion
features were aligned, quantified, and tested for statistical significance.
For the example phosphopeptide shown, IAS*PIQHEHDSGSR, the result-
ing matrix gives the intensity values measured in the wild-type and mutant
samples, as well as the corresponding log2 fold change (here −3.76) with
its associated significance. Abbreviations for the amino acids are as fol-
lows: A, Ala; D, Asp; E, Glu; G, Gly; H, His; I, Ile; P, Pro; Q, Gln; R, Arg;
and S, Ser.
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77% of those enzymes that show sequence conservation with human en-
zymes (table S1). A matrix and a network generated from these data related
the observed changes in the abundance of a phosphopeptide (measured in
triplicate) to the corresponding kinase or phosphatase deletion (Fig. 2 and
fig. S2). The matrix contains 8814 reproducible changes in peptide abun-
dance that mapped to 1026 phosphoproteins that were clustered according
to the coregulation of the phosphopeptides (tables S3 and S4). Of note, an
additional 7550 phosphopeptides were consistently identified but did not ex-
hibit a substantial change in abundance under any of the perturbations tested.
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Finally, the cellular abundance distribu-
tion of detected phosphoproteins (regulated
and unregulated) was roughly similar to that
of the total yeast proteome; however, the
complete phosphoproteome was still not
covered (fig. S3), because under our chosen
growth conditions, many phosphorylation
sites would not be phosphorylated, and be-
cause our experimental pipeline had several
biases, among them that only tryptic pep-
tides with a mass/charge ratio (m/z) suitable
for LC-MS/MS analysis (30) could be iden-
tified. Nevertheless, the observed phospho-
rylation sites covered a reasonably large
fraction of the phosphoproteome, and there-
fore an existing bias should not impair our
conclusions (31).

Direct versus indirect
phosphorylation events
Because kinases and phosphatases are com-
ponents of complex, interconnected signal-
ing networks, we fully expected to observe
a number of indirect, downstream responses,
that is, phosphopeptides whose abundance
would change despite their not being a di-
rect molecular target of the kinase or phos-
phatase in question. Indeed, we found that
such events seemed to strongly outnumber
direct kinase-substrate interactions, as argued
by the following observations. First, we de-
termined for each kinase or phosphatase the
number of phosphopeptides whose responses
showed the expected directionality (that is,
reductions in abundance in the case of ki-
nase deletions and increases in abundance in
the case of phosphatase deletions). In gener-
al, the number of phosphopeptides that re-
sponded in the expected directionality was
roughly similar to that of phosphopeptides
that responded with “inverted” directionality
(Fig. 2 and fig. S4). Exceptions to this find-
ing were analog-sensitive kinases that were
inhibited over the short term; for example,
in the case of Cdc28, about 76% of the phos-
phopeptides were regulated in the expected
directionality. No difference in the direction
of regulation was observed between non-
essential kinases or phosphatases (fig. S4).
Second, we conservatively assumed that phos-
phopeptides that changed in abundance in
www.
only a single deletion strain might be direct molecular targets of the kinase
or phosphatase in question. By this measure, we found that, at most, 32%
of the observed regulatory events might have been direct for kinases (that
is, that the events mapped to just a single kinase), whereas in the case of
phosphatases this number was 53%. The data sets generated by the short-
term inhibition of the analog-sensitive kinases showed a higher fraction of
potential direct targets (44%) than did the permanent deletion strains.

Third, we tested the overlap of our data with various previously
established reference protein-protein interactions in yeast (32–35), such
∆Ctk1
(PK)

∆Snf1
(PK)

∆Ssn3
(PK)

∆Psr1
(PP)

∆Sit4
(PP)

[...]
(124 perturbations total)

∆Tpk3
(PK)

[...]

 (8814 observed changes 
in phosphopeptide

 abundance)

n.d.
+ 1.56

n.d.
- 6.97
- 5.69

+ 2.94
- 6.03n.d.

- 1.00
- 1.62+ 1.84

- 1.71

...

Peptide abundance
change (log2-ratio)

K.IETES*TTIPNDSDR

K.SVQKQDEDPLS*PR
R.AST*AVESLDNHPPK

K.HNMSTQADNS*DDEELQK
...EPTTVSYEIAGNS*PNAER

R.YLMQPLQEMS*PK

+ 2.07
- 1.81- 0.56+ 0.07

+ 0.32

- 3.85- 3.62- 3.21- 1.92

Directionality as expected; full response (= on/off)
Directionality inverted; full response (= on/off)

Directionality as expected; partial response (= fold-change)
Directionality inverted; partial response (= fold-change)

(All events)

 474

 3’834
77’851

 335 423
79’352

 4’171

542

False discovery rate 0.015; fold-change >= 1.5 (abs[log2])Significant events:

Number of events:

(Kinase deletion: decrease of peptide;
 phosphatase deletion: increase of peptide)

(Evidence for indirect effect, that is not
 compatible with direct molecular target)

Directionality of response as expected Directionality inverted

Fig. 2. Matrix of kinases and phosphatases analyzed in this study and their effects on the phospho-
proteome. Overall, 124 kinases and phosphatases were interrogated through our experimental and
computational pipeline. Each row (y axis) corresponds to a regulated phosphopeptide and each col-
umn (x axis) summarizes the responders of a given kinase or phosphatase. Phosphopeptides with a
directionality as expected (that is, kinase deletion resulted in a decrease in peptide abundance,
whereas phosphatase deletion resulted in an increase in peptide abundance) are shown in graded
blue, and phosphopeptides with an inverted directionality (evidence for indirect effect, not compatible
with direct molecular target) are displayed in graded gold, according to the observed fold change for
each peptide. Phosphopeptides observed but not regulated or not detected are displayed in gray. At
the bottom, the total numbers of events observed in this study are listed. “Full response” corresponds
to phosphopeptides that appeared or vanished when wild-type and mutant strains were compared,
and “partial response” corresponds to phosphopeptides that showed a statistically significant change
in abundance, but were detected in both wild-type and mutant samples. Abbreviations for the amino
acids are as follows: A, Ala; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; N, Asn; P, Pro; Q,
Gln; R, Arg; S, Ser; T, Thr; and V, Val.
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as the STRING database (tables S5 and S6). We observed that the
overlap of our data with these direct interactions was small (table S5).
This is consistent with the long-held notion that kinase-substrate inter-
actions are too weak and transient to be detectable by typical affinity
purification–based protein interaction screens. Reassuringly, however,
first, the overlap of the heavily studied kinase Cdc28 with our data set
on the level of regulated phosphoproteins was high, showing a 43% over-
lap with the study of Ubersax et al. (36) and a 76% overlap with the study
of Holt et al. (10) (on the phosphorylation site level, the overlap was
46%). Second, all other phosphorylation events that did overlap showed
substantial enrichments for the expected directionality. Likewise, we ob-
served substantial enrichment of confirmed interactions, in particular for
those phosphopeptides that responded only in a single perturbation (table
S7). This indicates that our data included a sizeable fraction of direct
enzyme-target interactions; however, from all three tests, we can conclude
that indeed a large majority of our observed events were indirect conse-
quences of the deletion. Not a single kinase showed exclusively direct
effects, indicating that a focusedmodulation of a pathway (branch) without
system-wide adaptations might not be possible with a single drug.

Changed extents of phosphorylation versus changed
protein abundance
As is the case in prolonged pharmacological intervention, our genetic
kinase-deletion approach gave the cells ample time to accommodate
(and potentially compensate for) the loss of kinase activity. This should
not only have led to downstream, indirect consequences on the phos-
phoproteome, but could have also entailed subsequent changes in gene
expression and the amounts of proteins produced. To assess the extent
of this effect, we measured not only abundance changes in the phos-
phoproteome but also abundance changes of the proteins themselves,
by observing unphosphorylated peptides in a subset of 16 kinase dele-
tion strains. The kinases selected for this test ranged from those that had
a small effect on the phosphoproteome to those that had a large effect.
The data indicated that for a total of 467 regulated phosphopeptides that
matched to 118 proteins covered in this analysis, 79% of the proteins re-
mained unchanged in abundance, and, in a single case, the directionality
of the phosphopeptide regulation was opposite to the protein abundance
change (figs. S5 and S6). In 21% of the cases in which a phosphopeptide
was regulated, we also observed a change in protein abundance in the
same direction.

We also performed additional orthogonal, but more indirect, analyses
based on the coregulation or antiregulation of phosphorylation sites on
the same protein, which we found in more than half of the phosphopro-
teins. We reasoned that a synchronous change with a similar amplitude
and directionality of such phosphopeptides would indicate an abundance
change of the corresponding protein. In contrast, a discordant abundance
change of the phosphopeptides from such proteins would indicate a
change in phosphorylation site occupancy. These data (fig. S7) can be
summarized as follows: For about 25% of the observed events, only a
single regulated phosphopeptide was detected on the entire length of the
phosphoprotein, impeding this type of analysis. The remainder of events
fell into three classes: In 49% of the remaining cases, at least two phos-
phopeptides originating from the same protein were observed to be regu-
lated, and these exhibited identical directionality. In contrast, in 5% of
events, the changes were of opposing directionality; the latter pattern was
not consistent with a simple protein abundance change. Of note, in a large
part of the data, that is, in 46% of cases, a phosphopeptide that had
substantially changed in abundance was detected with at least one other
phosphopeptide on the same protein, but the other phosphopeptides were
not observed to be regulated. The latter two categories indicate that for
www
most events detected in this study, changes in the abundance of a phos-
phopeptide could not be explained by changes in protein abundance alone.

Effect of a given kinase or phosphatase
on the phosphoproteome
The number of phosphopeptides that were affected by the deletion of a
given kinase or phosphatase varied considerably (Fig. 2). Therefore, we
(i) quantified the impact of each kinase or phosphatase on the phospho-
proteome under the growth conditions tested, (ii) assessed whether the
kinases and phosphatases were associated with different biological pro-
cesses according to their effect on the phosphoproteome, and (iii) de-
termined which biological processes were affected by each kinase and
phosphatase.

We first computed the fraction of phosphopeptides that were affected
by a given kinase or phosphatase relative to the total number of phospho-
peptides that were affected by the kinases and phosphatases (Fig. 3A and
table S8). We observed that the deletion of 22% of the kinases and phos-
phatases that we tested resulted in fewer than 10 perturbed phosphopep-
tides each; therefore, we considered these deletions to have had minimal
effects on the fraction of the phosphoproteome detected in this study.
These included kinases important in cellular stress response mechanisms,
such as Mrk1 (37) and Gcn2 (38). In contrast, for 78% of the kinase and
phosphatase deletion strains, distinct changes in the phosphoproteome
could be detected. The kinases with the largest effects on the phosphopro-
teome were Ctk1 (39), a kinase with key roles in the regulation of tran-
scription and translation, and Psk2, which is involved in sugar flux and
translational regulation (40). These data show that the loss of most kinases
or phosphatases indeed perturbed large parts of the signaling network.

We next determined the distribution of biological processes repre-
sented by the phosphoproteins affected by the lower-impact (bottom half)
and higher-impact (top half) kinases and phosphatases, respectively. We
found that the enzymes with the smallest effect showed a strong enrich-
ment in processes associated with mitogen-activated protein kinase (MAPK)
cascade signaling [“MAPKKK (MAPK kinase kinase) cascade,” P = 3.9−10;
“response to pheromone,” P = 4.2−6], whereas the enzymes with the largest
effects showed a strong enrichment in processes related to the mitotic cell
cycle (“interphase of mitotic cell cycle,” P = 3.1−9; “mitotic cell cycle,” P =
1.4−6) (tables S9 and S10). These data showed that under the tested con-
ditions, even stress- or mating-related kinases showed a measurable impact
on the phosphoproteome, albeit lower than that of growth- and cell cycle–
related kinases or phosphatases. Lastly, we also computed those biological
processes that were enriched among the responders of each individual ki-
nase or phosphatase. We found that 575 biological processes were enriched
(Fig. 3B and table S11), an average of five processes for each active kinase
or phosphatase. The most frequently enriched functions were “endocytosis”
(39 times) and “cell morphogenesis” (38 times). Together, these data il-
lustrate that the effects of most kinases and phosphatases on the signal trans-
duction network, and thereby on controlled biological processes, were
broad, perhaps broader than expected (2).

Correlation with yeast phenotypes
We next tested the phenotypic consequences of deletion of kinases and
phosphatases, which are relevant in particular with regard to effects (side
effects) of potential drugs that inhibit kinases or phosphatases. For each
deletion strain, we assessed changes in growth speed (41) and morpholog-
ical features (table S8) (42). Despite 97 of the deletion strains showing
reproducible responses in the phosphorylation network, only 9 mutants
showed a strong effect on growth speed, and the total was 23 if strong
changes in morphological features were also included (Fig. 3A). Con-
versely, 11 of the 27 kinases and phosphatases that had an undetectable,
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1: Positive regulation of MAP kinase activity
2: Nuclear translocation of MAPK during osmolarity sensing
3: Activation of MAPK activity during osmolarity sensing
4: Protein import into nucleus, translocation
5: Response to abiotic stimulus 
6: Hyperosmotic response 

Enrichment
significance
(P value [log])

Perturbations:
∆  kinase / ∆  phosphatase

Outcomes:
Biological processes enriched among responders

Outcome: annotations of responding peptides
are enriched in osmosensing-related terms

Example: kinases known or predicted
to function in osmoregulation

0-20 -10
1 2 3 4 5 6

YJL128C (PBS2)

YMR291W
YPL026C (SKS1)

Kinase
Essential kinase
Phosphatase

Perturbations, ranked by impact

High-impact kinases or phosphatases

Low-impact kinases/phosphatases

... ...

... ...

A

B

Interphase of mitotic cell cycle
G1/S transition of mitotic cell cycle
Mitotic cell cycle

Bud32
Sit4
Pph21

MAPKKK cascade
Osmosensory signaling pathway
MAPKKK cascade during osmolarity sensing

Prr1
Mek1
Rck2

High impact

Low impact

No impact

Highest
impact

Fig. 3. (A) Phosphoproteome-wide impact of each kinase and phos- or a high effect on the phosphoproteome regions, together with their

phatase. For all kinases and phosphatases, we computed the fraction
of phosphopeptides affected relative to the total number of phospho-
peptides affected by all kinases and phosphatases. The kinases and
phosphatases were then ranked accordingly. Blue circles represent
kinases, light blue circles represent essential kinases, and golden cir-
cles represent phosphatases. A large golden triangle indicates a strong
growth or morphological phenotype of a given mutant, whereas a small
blue triangle represents a weak growth or morphological phenotype of a
given mutant. Right side: examples of kinases that showed either a low
www.
known cellular functions. (B) For each kinase and phosphatase, the
biological processes enriched among their regulated phosphoproteins
were computed. Each column corresponds to a biological process,
whereas each row corresponds to a given kinase or phosphatase (ki-
nases are depicted in blue, essential kinases in light blue, and phospha-
tases in gold). The color scale denotes the statistical significance of the
observed enrichment. Magnified inset: an example for three clustered
kinases, for which a related set of processes is observed enriched among
their substrates.
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or only minimal, effect on the section of the phosphoproteome measured
in this study showed a phenotype, among them, the kinase Elm1 (43),
which showed a strong morphological phenotype. However, many strong
morphological phenotypes were indeed observed in mutants that showed a
strong change in the phosphoproteome, but the results were nevertheless
surprising because they indicated that strong phenotypes were not neces-
sarily reflected in the status of the phosphoproteome, as exemplified by
Elm1 and other enzymes. Perhaps, in some cases, compensatory effects (vis-
ible at the level of the phosphoproteome) were precisely what prevented
the occurrence of strong phenotypic consequences, as exemplified by the
lack of correlation between the growth phenotypes and the changes in the
phosphoproteome. This observation is particularly relevant because, first,
cancer cells might display in some regards increased compensatory power,
and second, kinase inhibitors that are specific for a target in vivo might not
necessarily result in a cellular phenotype.

DISCUSSION

Our study delineates the responses of the system-wide cellular phosphoryl-
ation network upon systematic inactivation of individual kinases or phos-
phatases. Because the phosphorylation network is one of the main cellular
backbones for the processing of information and the implementation of cel-
lular responses, it is highly dynamic. Our measured behavior is only a single
snapshot of a large number of possible outcomes, which were constrained
by the growth and experimental conditions that we chose.

The first surprising observation that we made was that 7550 phospho-
peptides were consistently identified but did not show a substantial amount
of regulation. This may be due to, first, our cutoffs being conservative; thus,
many putative regulatory events may not have been reproducible or strong
enough to be deemed substantial. Second, 22% of the kinase and phospha-
tase mutants could not be analyzed, mainly because the corresponding
genes are essential for cellular viability. Perhaps their essentiality is at least
partly due to a generally higher impact on the phosphoproteome, as indi-
cated recently (10), or because their substrates need to be phosphorylated
constitutively. Third, in yeast, a large number of paralogous kinase isoforms
exist (for example, Tpk1, Tpk2, and Tpk3). Given this, it is reasonable to
expect some overlap or redundancy in substrates, which could lead to a
considerable number of phosphorylation sites that would appear unregulated
as long as only one of the paralogous duplicates was deleted. Fourth, the
yeast populations that we analyzed consisted in a strict sense of many mixed
subpopulations (for example, cells in different cell cycle states), and it can
be assumed that an identical phosphorylation site can become phosphoryl-
ated by different kinases during the cell cycle. Therefore, analyzing dele-
tions of single kinases or phosphatases would only manifest in slight, if any,
regulation for such sites; for example, a cell cycle phase–specific regulation
is masked by all cells that are not in that particular phase at any given time
point. Fifth, we also analyzed whether the regulated and nonregulated phos-
phopeptides fell into different protein abundance classes (for example, the
nonregulated are of low abundance and therefore regulation is more difficult
to observe), but this was not the case. Overall, it is likely that all five pos-
sible explanations contribute to the observed result.

Another finding of this study was the unexpectedly strong dominance
of indirect effects (as opposed to direct molecular target effects), which
were often without a resulting strong cellular phenotype. To some extent,
this observation fits with a view of signaling networks having to be highly
flexible and redundant to respond to an ever-changing environment while
maintaining stable cellular states (44). This constrains the architecture of
the system, as described by the “law of requisite variety” (45, 46), a fun-
damental law in systems control theory. It states that stable systems have
to encode a number of control states that is higher than or equal to the
www
number of states to be controlled. Considering that for each cell the space
of “environmental states” is enormous, consequently, also the cellular “con-
trol variable space” must have an equal or greater size. The combinatorial
possibilities of the phosphoproteome seem to ideally fulfill this demand (44).

An alternative explanation for this observation might also be found in
the theory of Neutral Evolution (47). It is possible that only a small num-
ber of the observed phosphorylation events are actually relevant for the
function and survival of the cell, whereas most phosphorylation events
would simply have no effect, or at least have no negative effect, on the cell.
As a result, such phosphorylation sites would not be counterselected during
evolution. The data generated in this study do not, by themselves, support or
refute this hypothesis. Finally, the low correlation between phenotype and
the degree of change in the phosphoproteome may have been affected by
the growth conditions chosen here, the lack of sensitivity of the phenotypic
assays, or the possibility that the phosphoproteomics data were not sampled
deeply enough to find such correlations.

In addition to revealing insights into the architecture of cellular signal-
ing, our data set also describes the proteome-wide functional states of yeast
cells; this might be useful for determining diagnostic markers for stress
conditions, functional states of key pathways, or the activity of a given ki-
nase or phosphatase. These markers could be used in conjunction with tar-
geted proteomics approaches to not only study basic biological processes
but also determine how a given pharmacological intervention would affect
the cellular signaling network.

With targeted proteomics methods, not only can the cellular informa-
tion flux under many conditions be observed, at high throughput, but this
approach also enables us to understand for all phosphorylation sites wheth-
er the observed change is a “true” regulation event or simply as a result of a
change in protein abundance (48–50) because both the phosphopeptide and
several proteotypic peptides corresponding to the protein could be rela-
tively or absolutely quantified, thus determining the phosphorylation site
occupancy and regulation. Overall, our data provide global starting points,
and constraints, toward understanding the complexity of phosphorylation
regulation in yeast and other organisms. In the future, the results should
be complemented by similar data for specific cellular conditions, time courses,
or small-molecule interventions, thereby sharpening—step by step—our
view of the events in the phosphorylation network. The ensuing insights
in general design rules and motifs in cellular information processing will
be essential for our ability to develop kinase-based drugs in an informed way.

MATERIALS AND METHODS

The generated LC-MS/MS phosphoproteome maps (table S2), an over-
view of the generated data (table S12), and the statistical methods used
for their analysis are explained in detail in the Supplementary Materials.
We have made available all kinase/phosphatase-responder relations in a
user-friendly way in the recently described PhosphoPep database (30, 51)
(http://www.phosphopep.org). All yeast strains used here can be supplied
upon request in a 96-well plate format (table S13).
SUPPLEMENTARY MATERIALS
www.sciencesignaling.org/cgi/content/full/3/153/rs4/DC1
Materials and Methods
Fig. S1. Power of the analysis approach.
Fig. S2. Topological properties of the protein phosphorylation network.
Fig. S3. Abundance distribution of responder phosphoproteins (proteins that contain
“regulated” phosphopeptides).
Fig. S4. Ratio of phosphopeptides that are reduced or increased in abundance.
Fig. S5. Regulation of phosphopeptides versus regulation of protein abundance.
Fig. S6. Regulation of phosphopeptides versus regulation of protein abundance.
Fig. S7. Regulation of phosphopeptides that map to the same protein.
.SCIENCESIGNALING.org 21 December 2010 Vol 3 Issue 153 rs4 6

http://stke.sciencemag.org/


R E S E A R C H R E S O U R C E

 on June 30, 2019
http://stke.sciencem

ag.org/
D

ow
nloaded from

 

Table S1. List of enzymes.
Table S2. False discovery rate of peptide identification and specificity of phosphopeptide
enrichment for each analyzed phosphorylation pattern.
Table S3. Information on phosphopeptides and phosphoproteins.
Table S4. Significant coregulation of kinases and phosphatases.
Table S5. Overlap of data from this study with other data sets.
Table S6. Confirmed STRING interactions.
Table S7. Overlap of possible direct targets with other data sets.
Table S8. Effects of each kinase and phosphatase on the phosphoproteome.
Table S9. Enrichment of biological processes among the low-impact kinases (bottom half).
Table S10. Enrichment of biological processes among the high-impact kinases (top half).
Table S11. GO terms.
Table S12. Overview of the entire data set.
Table S13. Information on yeast strains.
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kinases and phosphatases, is lacking. Indeed, inadequate knowledge of the downstream, indirect consequences of
been characterized individually in vitro, an understanding of their roles in vivo, in the context of the entire network of 

Protein kinases and phosphatases make attractive targets for therapies. Although various such enzymes have
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