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Abstract

Patients with pancreatic neuroendocrine tumors (PNET)
commonly develop advanced disease and require systemic
therapy. However, treatment options remain limited, in
part, because experimental models that reliably emulate
PNET disease are lacking. We therefore developed a
patient-derived xenograft model of PNET (PDX-PNET),
which we then used to evaluate two mTOR inhibitor drugs:
FDA-approved everolimus and the investigational new drug
sapanisertib. PDX-PNETs maintained a PNET morphology
and PNET-specific gene expression signature with serial
passage. PDX-PNETs also harbored mutations in genes pre-
viously associated with PNETs (such as MEN1 and PTEN),

displayed activation of the mTOR pathway, and could be
detected by Gallium-68 DOTATATE PET-CT. Treatment of
PDX-PNETs with either everolimus or sapanisertib strongly
inhibited growth. As seen in patients, some PDX-PNETs
developed resistance to everolimus. However, sapanisertib,
a more potent inhibitor of the mTOR pathway, caused
tumor shrinkage in most everolimus-resistant tumors. Our
PDX-PNET model is the first available, validated PDXmodel
for PNET, and preclinical data from the use of this model
suggest that sapanisertib may be an effective new treatment
option for patients with PNET or everolimus-resistant PNET.
Mol Cancer Ther; 17(12); 2702–9. �2018 AACR.

Introduction
Pancreatic neuroendocrine tumors (PNET) are a form of pan-

creatic neoplasmwith neuroendocrine features whose precise cell
of origin is unknown. PNETs comprise approximately 10% of all
pancreatic malignancies (1), can cause diverse clinical syndromes
(2), and have a 5-year mortality rate of approximately 60% (1, 3).
PNETs can be either sporadic or the consequence of a hereditary
cancer syndrome, such as multiple endocrine neoplasia type 1
(MEN1). Two-thirds of patients diagnosed with PNET have unre-
sectablemetastatic disease and therefore require systemic therapy.

Activated mTOR signaling is present in about 14% of PNETs
and is associated with a poor prognosis (4). mTOR is a serine-
threonine kinase that serves as the catalytic subunit of two distinct
signaling complexes, mTORC1 and mTORC2. mTORC1 pro-
motes cell growth through two key effectors: p70S6 Kinase 1
(S6K1) and eIF4E-binding protein 1 (4EBP1). mTORC1 directly
phosphorylates S6K1, which can then phosphorylate several
downstream substrates such as ribosomal protein S6 (RPS6).
4EBP1 is inactivated by mTORC1 phosphorylation, initiating the
translation of proteins. mTORC2 promotes cell proliferation and
survival through activation of AKT by phosphorylation (5).

Activation of the mTOR pathway in PNETs results from muta-
tions in genes that encodenegative regulators of thepathway, such
as PTEN (4, 6, 7). The best known mTOR inhibitor drug is
rapamycin, which forms a complex with 12-kDa FK506-binding
protein (FKBP12) to inhibit mTORC1. Because ofmTOR's central
importance in many human diseases, there are many efforts to
develop drugs that more effectively inhibit its activity (8). The
mTOR inhibitor drug everolimus, a derivative of rapamycin (8),
has been approved by the FDA for the treatment of advanced
PNETs and other tumors (9, 10). Everolimus, like rapamycin and
other homologous agents (rapalogs), allosterically inhibits
mTORC1 but does not affect mTORC2. It can also fail to block
the phosphorylation ofmTORC1 target 4EBP1, and paradoxically
increase the activation of AKT due to suppression of a negative
feedback loop (11). Clinically, everolimus typically delays human
PNET progression by several months, but significant tumor
shrinkage is unlikely and eventual resistance is the rule. Sapani-
sertib (INK128), is a second-generationmTOR inhibitor drug that
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directly binds to the ATP-binding site of mTOR, thereby potently
inhibiting bothmTORC1andmTORC2(12), andovercoming the
everolimus-resistant phosphorylationof 4EBP1andAKT (13, 14).
Also in contrast to rapalogs, sapanisertib has strong cytotoxic
activity toward tumors (15–17).

Patient-derived xenografts (PDX) have emerged as an impor-
tant platform to elucidate new treatments and biomarkers for
cancer (18–21). Human tumor samples, typically derived from
biopsy or surgical samples, are implanted and propagated in
nude mice in an effort to generate PDX lines that retain
signaling pathways (22) and the idiosyncratic intratumor het-
erogeneity that typifies human cancer (23–25). PDX models
have proven to be particularly useful tools for predicting the
effectiveness of new drug therapies (26–29), and modeling
drug resistance (30, 31). Although multiple PDX models have
been successfully developed for pancreatic ductal adenocarci-
noma (32, 33) and other cancers (20, 21), a PDX model for
PNETs has not been described.

Here we report the establishment of the first PDX model for
PNETs, and show using this model that the second-generation
mTOR inhibitor drug sapanisertib may serve as an effective new
treatment option for patients with PNET and everolimus-resistant
PNET.

Materials and Methods
PNET xenografts

Patient written informed consent was obtained, and the
research protocol was approved by the Institutional Review Board
of the University of California, San Francisco. All animal studies
were conducted under an animal use protocol approved by the
University of California San Francisco Animal Care and Use
Committee. A patient with an advanced PNET producing insulin
underwent palliative debulking of liver metastases to ameliorate
symptomatic hypoglycemia. To establish xenografts, nondiagnos-
tic portions of tumors removed during the hepatic resection were
minced under aseptic conditions and approximately 20 mL of
tumor:Matrigel (1:1) implanted subcutaneously into female athy-
mic nude mice (Envigo). Nonimplanted fragments were flash-
frozen in liquid nitrogen andbanked. For the initial implantation,
bilateral injections were made into the flanks of mice to establish
the xenograft passage 0 (P0). When tumor burden reached
approximately 700 to 1,000 mm3, mice were sacrificed; tumors
were then resected, processed, and injected subcutaneously into
new recipient animals. To establish cohorts ofmice for drug trials,
individual tumors were implanted into 4 to 5mice and allowed to
reach maximum protocol size. Tumors were then minced and
implanted into 30 mice and allowed to grow. When the average
tumor size of the cohort reached 150mm3, animals with high and
low tumor volumes were discarded from the study and the
remaining animals randomized into control and treatment
groups on the basis of tumor volume. Tumor volume was mea-
sured every 3 to 7 days during drug treatment. For single-arm drug
studies, waterfall plots were used to summarize the distribution of
tumor growth responses to treatments, as described previously
(34). Briefly, the tumor size at the start of treatmentwas defined as
the baseline volume, and the smallest tumor volume recorded
during treatment was defined as the best response. If the tumor
did not respond and its size did not decrease below baseline
throughout treatment, then the largest change in tumor size up to
100% was used instead.

Drug treatment
Everolimus was purchased commercially and sapanisertib was

synthesized by K.M. Shokat and G.S. Ducker. The drugs were
prepared as 2.5mg/mL suspensions in a vehicle of 5%1-methyl-2
pyrrolidinone (NMP), 80% polyvinyl pyrralidone (PVP), and
15% water for initial pharmacodynamic studies, and then in
3.1%NMP, 81.6% PVP, 15.3%water for tumor regression studies
to reduce toxicity. Single tumor-bearing mice were dosed once
daily with 10 mg/kg body weight (BW) everolimus, 1 mg/kg BW
sapanisertib, or vehicle by oral gavage (OG). Mice were sacrificed,
and tumors harvested and split and paraffin embedded for
histologic analysis or flash frozen for whole tissue Western blot-
ting analysis and molecular interrogation at experimental
endpoints.

MicroPET Imaging
68Ga-DOTATATEwas prepared and purified in the UCSF radio-

chemistry laboratory. Briefly, 68GaCl3 was eluted from a
68Ge/68Ga generator (Eckert & Ziegler) and reacted with DOTA-
TATE (DOTA0, Tyr3, Thr8]octreotide) in sodium acetate buffer.
Solid-phase extraction purification gave 68Ga-DOTATATE in
injectable ethanol/saline solution. PNET-PDXmice were injected
with 120–180 mCi (4.4–6.7 MBq) of 68Ga-DOTATATE through a
tail vein catheter. Static PET/CT images were taken on a Siemens
Inveon microPET/CT scanner for 30 minutes at 2.75 hours post
tracer injection. Images were reconstructed and viewed using
AMIDE software (freeware, amide.sourceforge.net).

Western blot analysis
All antibodies for Western blot analysis were purchased from

Cell Signaling Technology. Blots were visualized by using either
horseradish peroxidase (HRP)-conjugated secondary antibodies
and chemiluminescent reagent from Pierce Protein Research
Products or by fluorescent secondary antibodies. GAPDH was
used as an internal control and each experiment was done in
independent biological duplicates.

IHC
Tissues were fixed in Z-fix (Anatech) and processed for paraffin

or frozen sections using standardmethods. The following primary
antibodies were used: rabbit anti-CHGA (Immunostar); rabbit
anti-5-HT (Immunostar); mouse monoclonal anti-5-HT (Dako),
guinea pig polyclonal anti-INS (Dako), mouse monoclonal anti-
Ki-67 (clone MIB-1, Dako). Secondary antibodies (Jackson
ImmunoResearch) were FITC-conjugated goat anti-mouse and
anti-rabbit; FITC-conjugated donkey anti-goat and anti-mouse;
Cy3-conjugated donkey anti-goat, goat anti-mouse, and anti-
rabbit; HRP-conjugated goat anti-mouse and anti-rabbit. Slides
were imaged on an Axioskop 2 microscope (Zeiss) or on an
LSM510 META confocal microscope (Zeiss). Ki-67 was used to
assess proliferation. The mitotic index was calculated on the
hematoxylin and eosin sections for the histology samples accord-
ing to the 2010 WHO guidelines. Ki-67 indices for the cell block
sections were calculated as the total number of tumor cells with
positive nuclear staining divided by the total number of tumor
cells present.

Whole-exome sequencing
Genomic DNA was extracted using standard procedures.

Targeted capture and massive parallel sequencing were per-
formed at the UCSF Institute for Human Genetics (San
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Francisco, CA). Briefly, genomic DNA was sheared by Covaris
S2 to a target size of 200 to 300 bp and assembled into a library
with TruSeq adapters containing indexes that differentiate
different libraries in a capture reaction as well as a sequencing
run (Kapa Biosystems). Libraries were pooled into a capture
reaction that contains biotinylated DNA oligonucleotides
(called "baits") from Roche-Nimblegen SeqCap EZ Human
Exome Library v3.0 for 72 hours. The DNA bait-DNA hybrids
were then pulled out of the complex mixture by incubation
with streptavidin-labeled magnetic beads and captured onto a
strong magnet. After washing, the targeted DNA of interest was
eluted and subjected to 18 cycles of DNA amplification. Cap-
tured DNA libraries were sequenced with the Illumina HiSeq
2500, yielding 150 (2 � 75) base pairs from the final library
fragments. Sequence data were mapped to the GRCh37 refer-
ence genome and processed using the Bina Genomic Analysis
Platform. Somatic mutation caller tools included JointSNVMix
(35), MuTect (35), Somatic Sniper (36), VarDict (37), and
VarScan (37). Somatic mutations were also filtered on the basis
of read quality, allele frequency [dbSNP (38), 1000 Genomes
(39), ExAC (40), COSMIC (41)], and functional effect [SIFT
(42), Polyphen (43), SnpEff (44)]. Sequencing data can be
found at the Sequence Read Archive (SRA Study accession
number: SRP162135).

Results
Development and characterization of a PDX model of PNET

To establish xenografts, nondiagnostic portions of PNET liver
metastasis tissue were removed during partial hepatic resection
surgery in a patient with an advanced, well-differentiated PNET
producing insulin, processed as described and subcutaneously
implanted into female athymic nude mice (Fig. 1A). The success-
fully engrafted tumormaintained the characteristics of the patient
tumor tissue throughmultiple rounds of serial transplantation in
athymic mice to successfully establish this PDX-PNET.

We compared gene expression between the original patient
PNET liver metastasis tissue (Liv-Met) and PDX-PNET tissue
harvested at passage 6 (Fig. 1B). Using RNA sequencing (RNA-
seq), we detected the expression of neuroendocrine tumor genes
CHGA, INS, and TPH1 (2). We also detectedNKX2-2, ASCL1, and
FEV, which encode developmental transcription factors critical to
the differentiation and hormone expression of neuroendocrine
tumors (45, 46). Consistent with this, immunofluorescence anal-
ysis of tissue sections revealed strong expression of CHGA, INS,
and 5-HT, the metabolic product of TPH1, in both Liv-Met and
PDX-PNET tissues (Fig. 1C). PDX-PNETs also retained a well-
differentiated neuroendocrine tumor morphology with a Ki-67
index of 6% to 8% (G2).

Figure 1.

Generation and characterization of the
patient-derived xenograft model of
PNET (PDX-PNET). A, nondiagnostic
portion of metastasized PNETs
were removed during the hepatic
resection and expanded in a cohort
of female athymic nude mice.
Comparison of neuroendocrine
biomarkers in original patient
tumor and passage-6 PDX-PNET
using RNA sequencing (B) and
immunofluorescence (C). In B, a
"þ" means a gene is expressed.
In C, DNA is in blue while CHGA,
INS, and 5-HT are in green.
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PNETs express somatostatin receptors (47); consequently, the
radiolabeled somatostatin analogue Gallium-68 DOTATATE is
used as a tracer for positron emission tomography–computed
tomography (PET-CT) imaging of PNETs in the clinic (48). We
therefore evaluatedwhetherGallium-68DOTATATE could be used
to perform functional PET-CT imaging of PDX-PNETs in vivo. At 3
hours postinjection, Gallium-68 DOTATATE PET-CT clearly colo-
calized with the subcutaneous PDX-PNETs (Fig. 2), showing that
Gallium-68DOTATATE can be used to perform functional PET-CT
imaging in this model. Importantly, a linear relationship was
observed between tumor volume and normalized Gallium-68
DOTATATE counts over a large range of tumor size (Fig. 2C).

Using whole-exome sequencing to identify genetic mutations
harbored in the PDX-PNET model, we found that PDX-PNETs
containedmutations in known PNET-associated genes (4, 6), such
asMEN1, BRCA2, PTEN, and SETD2 (Fig. 3A).We did not observe
mutations in genes commonly associated with pancreatic ductal
adenocarcinoma, such asKRAS, TP53, CDKN2A, SMAD3, SMAD4,
and TGFBR1 (49, 50). Together, these findings provide strong
evidence that the PDX-PNET model is a bona fide PNET model.

Evaluating mTOR inhibitor drugs everolimus and sapanisertib
in the PDX-PNET model

PTEN functions as an inhibitor of the mTOR pathway (51).
Mutations in PTEN cause mTOR pathway activation (51), and

can predict tumor response to mTOR inhibitor drugs (52). We
found two deleterious frameshift mutations in PTEN (Fig. 3B),
suggesting mTOR pathway activation in the PDX-PNET model.
Consistent with this, Western blot analysis revealed phosphor-
ylation of the mTORC1 downstream targets 4EBP1 and RPS6
(Fig. 4B; lanes 1–3). We also detected the phosphorylation of
mTORC2 target AKT. Phosphorylation of S6K1, a substrate of
mTORC1 that phosphorylates RPS6, was barely detectable in
PDX-PNETs.

Everolimus, an mTOR inhibitor drug that inhibits mTORC1
but not mTORC2, demonstrated unequivocal antitumor activity
in a phase III study leading to its approval for the treatment of
advanced PNETs (9).We therefore evaluated the response of PDX-
PNETs to treatment with everolimus. We also evaluated sapani-
sertib, a second-generationmTOR inhibitor that directly binds the
ATP-binding site of mTOR and inhibits both mTORC1 and
mTORC2 (12). The optimal everolimus and sapanisertib dose
was determined by pharmacodynamic studies (Supplementary
Fig. S1). Single tumor-bearing mice were treated once daily with
everolimus (10mg/kg BW), sapanisertib (1mg/kg BW), or vehicle
by oral gavage for 28 days. Treatment was well tolerated in all
groups. We found that vehicle-treated control PDX-PNETs grew
several fold in size (n¼ 5; Fig. 4A). In contrast, the growth of PDX-
PNETs treated with either everolimus (n ¼ 6) or sapanisertib
(n ¼ 6) was significantly blocked (Fig. 4A).

Figure 2.
68Ga-DOTATATE PET-CT imaging of
the PDX-PNET model. A, 3D rendered
PET/CT image showing flank tumor
tracer uptake.B,Axial view at the level
of the tumor. C, Relationship between
tumor size and normalized 68Ga-
DOTATATE PET/CT counts.
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To evaluate the in vivo effects of everolimus and sapanisertib on
mTOR pathway targets, we harvested PDX-PNET tissues and
performed Western blot analysis. Everolimus completely inhib-
ited the phosphorylation of mTORC1 target RPS6, but not 4EBP1
(Fig. 4B; lanes 4–6). AKT phosphorylation was increased, consis-
tent with rapalogs having no activity towardmTORC2 targets and
the feedback activation of AKT that has been observed in human
trials with other rapamycin derivatives (11). In contrast, sapani-
sertib inhibited the phosphorylation of both mTORC1 targets
4EBP1 and RPS6 (Fig. 4B; lanes 7–9). Also in contrast to ever-
olimus, sapanisertib inhibited the phosphorylation of the
mTORC2 target AKT. These findings demonstrate that sapaniser-
tibmore completely inhibits themTOR pathway than everolimus
in the PDX-PNETs.

The PDX-PNET model for studying acquired drug resistance in
PNETs

The development of drug resistance is a major limitation of
PNET clinical response to everolimus treatment (53). We there-

fore sought to generate everolimus-resistant PDX-PNETs by treat-
ing a large cohort of tumor-bearing animals once daily with
everolimus for several months (n ¼ 34). Because this was a
single-arm study, everolimus resistance was defined as a doubling
in the tumor volume from the day of treatment. The baseline
volumewas defined as the tumor size at the start of treatment, and
the smallest tumor volume recorded during treatment was
defined as the best response (34). If the tumor failed to respond,
then the largest change in tumor size up to 100%was used for the
best response. In Fig. 5A, animals are listed in order of increasing
percentage response to everolimus. Most PDX-PNETs (29/34)
experienced a reduction in tumor volume during everolimus
treatment (Fig. 5A; numbers 6–34), five failed to respond (Fig.
5A; numbers 1–5), and seven experienced complete regression
(Fig. 5A; numbers 28–34). The variability in response may be
because of the heterogeneous nature of the PDX-PNET model
(23–25) or experimental variation. From this group, 10 ever-
olimus-resistant PDX-PNETs were identified (Fig. 5B). Although
all 10 everolimus-resistant tumors doubled in size during ever-
olimus treatment, their time to resistance was variable, ranging
between 7 and 236 days, and with a median time to resistance of
110 days. The best response of the 10 everolimus-resistant PDX-
PNETs to everolimuswas also variable, with some not responding
at all (Fig. 5A; numbers 1 and 3), and others responding with a
greater than 50% reduction in tumor volume (Fig. 5A; numbers
22 and 23).

Everolimus partially inhibits mTORC1 and fails to inhibit
mTORC2, suggesting that resistance to everolimus may be over-
come by the more potent mTOR pathway inhibitor drug sapani-
sertib, which inhibits both mTORC1 andmTORC2. We therefore

Figure 3.

PDX-PNETs harbor mutations in genes commonly associated with PNETs and
mTOR pathway activation. A, Whole-exome sequencing of PDX-PNET
reveals mutations in genes commonly found in PNET. B, Two frameshift
mutations were identified in PTEN. Green, phosphatase domain; blue, C2
domain; red, PDZ-binding domain.

Figure 4.

Response of PDX-PNETs to the mTOR inhibitor drugs everolimus and
sapanisertib. A, Growth chart of PDX-PNETs treated with vehicle control,
everolimus, or sapanisertib for 28 days (vehicle control n¼ 5, everolimus n¼ 6,
sapanisertib n¼ 6). The P values were calculated by two-tailed Student t test (� ,
P < 0.05, ��, P < 0.01). Error bars indicate the SD from the mean. B,Western blot
analysis of mTOR pathway targets in PDX-PNETs harvested after 28 days of
treatment with either vehicle control, everolimus, or sapanisertib. Each lane
represents a single xenograft harvested from a unique mouse.
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evaluated the effect of sapanisertib treatment on everolimus-
resistant PDX-PNETs (Fig. 5B). In Fig. 5B, animals are listed in
order of increasing percentage response to sapanisertib, with
listed numbers corresponding to those in Fig. 5A. We found that
most everolimus-resistant PDX-PNETs (9/10) experienced a
reduction in tumor volume during sapanisertib treatment, one
failed to respond, and one experienced complete regression. The
everolimus-resistant PDX-PNET that completely regressed during
sapanisertib treatment had not responded to everolimus treat-
ment (Fig. 5; number 1), whereas the everolimus-resistant PDX-
PNET that did not respond to sapanisertib had a moderate
response to everolimus (Fig. 5; number 15).

Discussion
Patient-derived xenograft (PDX) models have proven to be

extremely useful in drug discovery research (18–21). Unlike cell
lines andmany genetically engineered mouse models, PDXmod-
els retain the cellular and genetic heterogeneity of the primary
human tumor (23–25) and may therefore better model many

important aspects of the disease, such as drug resistance (30, 31).
We report the establishment of the first PDX model for PDX-
PNETs. We also refer to this as the HNV PDX-PNET model as the
implanted tumor tissue had been resected from segment V of the
patient's liver. There have beenmany previous attempts by us and
other groups to establish a PDXmodel of PNET. We do not know
why this one was successful, but the PNET was unusually aggres-
sive, had metastasized, and ultimately killed the patient. We
speculate that the unique aggressiveness of the tumor enabled it
to successfully survive and grow in a foreign mouse host. Iden-
tifying a molecular cause for this aggressiveness is not trivial,
especially as this is currently an n of 1. Additional sequencing
analyses and the establishment of additional PDX-PNET models
may provide some insight.

Histologic analysis, gene expression profiling, and whole-
exome sequencing confirmed that the PDX-PNETs retained the
hallmark features of PNETs. Interestingly, PDX-PNETs harbored
PTEN mutations and responded to mTOR inhibitor drugs ever-
olimus and sapanisertib, suggesting that the PNET mutational
profile may determine drug response. In addition to PTEN,

Figure 5.

Response of everolimus-resistant
PDX-PNETs to sapanisertib. A, The
best response of tumors treated with
everolimus, as compared with
pretreatment baseline (n ¼ 34).
Numbers along the x-axis indicate
arbitrarily assigned animal numbers in
order of increasing percentage
response to everolimus. The bars
indicate the percent change in tumor
burden from baseline. B, The best
response to sapanisertib in 10 animals
with everolimus-resistant PDX-PNETs.
Selected tumor characteristics are
listed in the table below the graph.
Animals are listed in order of
increasing percentage response to
sapanisertib, with listed numbers
corresponding to those in Fig. 5A.
Sapanisertib treatment ended when
tumors either regressed (n ¼ 1),
developed sapanisertib resistance,
and exceeded five times the original
volume (n ¼ 6), or animals died (n ¼
3). Underlined numbers indicate
animals that died during treatment.
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PDX-PNETs harbored mutations in MEN1 and BRCA2 (Fig. 3).
MEN1 encodes the tumor-suppressivemenin and germlinemuta-
tions inMEN1 causemultiple endocrine neoplasia type 1 (MEN1;
ref. 54). A recent study identified a synthetic lethal interaction
betweenMEN1 mutation and MEK1/2 inhibition in neuroendo-
crine cells (55), suggesting that MEK1/2 inhibitor drugs FDA-
approved for other cancers such as trametinib or cobimetinibmay
have clinical activity against PNETs. Loss of BRCA2 drives one of
the mutational signatures found in PNETs (4, 56) and PARP
inhibitors have shown promise in clinical studies against
BRCA2-mutated tumors (57, 58). Future studies evaluating these
treatments on PDX-PNETs may be informative.

PDX-PNETs responded equally to everolimus and sapanisertib
despite everolimus treatment leading to AKT activation and not
suppressing p4EBP (Fig. 4), suggesting that these are not the
mechanisms of resistance, at least in the short term. Comparing
time to progressionmay reveal a potential benefit for sapanisertib
over everolimus, andwould alsomore closely resemble endpoints
used in clinical trials.Oneparticularly promisingfinding fromour
study was that the majority of everolimus-resistant PDX-PNETs
responded to sapanisertib (Fig. 5), which directly targets mTOR
and inhibits the activity of bothmTORC1andmTORC2(8). Sapa-
nisertib is currently being evaluated in multiple cancers across 11
clinical trials, including a phase II study of rapalog-resistant
advanced PNET (ClinicalTrials.gov Identifier: NCT02893930).
The results from this trial may help clarify the value of the HNV
PDX-PNET model in selecting PNET therapies and identifying
PNET biomarkers of drug response and resistance.
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