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ABSTRACT
◥

Effective treatment of pediatric solid tumors has been ham-
pered by the predominance of currently “undruggable” driver
transcription factors. Improving outcomes while decreasing the
toxicity of treatment necessitates the development of novel
agents that can directly inhibit or degrade these elusive targets.
MYCN in pediatric neural-derived tumors, including neuroblas-
toma and medulloblastoma, is a paradigmatic example of this
problem. Attempts to directly and specifically target MYCN
have failed due to its similarity to MYC, the unstructured nature
of MYC family proteins in their monomeric form, the lack of an
understanding of MYCN-interacting proteins and ability to test

their relevance in vivo, the inability to obtain structural infor-
mation on MYCN protein complexes, and the challenges of
using traditional small molecules to inhibit protein–protein or
protein–DNA interactions. However, there is now promise for
directly targeting MYCN based on scientific and technological
advances on all of these fronts. Here, we discuss prior challenges
and the reasons for renewed optimism in directly targeting this
“undruggable” transcription factor, which we hope will lead to
improved outcomes for patients with pediatric cancer and create
a framework for targeting driver oncoproteins regulating gene
transcription.

MYCN as an Attractive Drug Target
Transcription factors in the MYC family are dysregulated in the

majority of human tumors, including most pediatric malignan-
cies (1, 2). This family is composed of three genes, MYC (c-MYC),
MYCN (n-MYC), and MYCL, with conserved roles in central cellular
processes, including regulating transcription, metabolism, and cell
division. Whereas MYC is altered across a wide range of cancers,
MYCN has a more narrow role—primarily as a driver of pediatric
malignancies derived from central and peripheral nervous system

tissues, including neuroblastoma, medulloblastoma, retinoblastoma,
astrocytoma, atypical teratoidrhabdoid tumors (ATRT), and glioblas-
toma multiforme, among others, with emerging roles as a driver of
therapy-resistant neuroendocrine variants of lung and prostate
cancer (2).

MYCN is inmany ways an ideal therapeutic target. UnlikeMYC, its
physiologic expression is tightly lineage restricted during develop-
ment, with limited expression in normal pediatric or adult tissues,
suggesting a wide therapeutic index for MYCN-specific drugs. When
present in tumors, MYCN amplification is generally thought to be a
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truncal-initiating event that is required for ongoing tumor mainte-
nance. It is rarely a subclonal finding and is not acquired or lost during
tumor progression or relapse. In addition, transgenic expression of
MYCN in the appropriate progenitor cells in mouse models can drive
tumorigenesis that faithfully recapitulates human neuroblastoma and
medulloblastoma, respectively (3, 4).

Despite intensive investigative efforts, indirectly targeting modu-
lators of MYCN transcription and stability or the downstream med-
iators of MYCN function has failed to result in the identification of
MYCN-specific therapeutics. For example, there was initial optimism
that bromodomain and extra-terminal (BET) protein inhibitors could
serve as universal and specific MYC-targeting drugs (5). However, it
was clear early on that also affected MYCN (6) and MYCL (7).
Preclinical data in neuroblastoma models showed tumor growth delay
in some models, but no antitumor activity in others, with likewise
variable influence onMYCNprotein levels (8, 9). In addition, although
there has been some clinical efficacy in early adult trials, most notably
in NUT midline carcinoma with a canonical BRD4–NUT fusion
oncoprotein (10), objective response rates have been low and mostly
transient in other diseases (11, 12) and it has become clear that tumor
cells can adapt in ways that restore MYC despite continued BET
inhibition (13, 14).

Another illustrative example is the interaction between Aurora
kinase A (AURKA) and MYCN and the effects of AURKA inhibitors.
Early preclinical testing showed excellent activity of the AURKA
inhibitor alisertib (MLN8237) in pediatric solid tumors (15), though
this was independent of MYCN status. In addition, MYC-driven
tumors were also sensitive to AURKA inhibition (16). Subsequent
clinical testing in neuroblastoma demonstrated substantial toxicity
and largely disappointing responses (17). However, AURKA binds to
MYCN and sequesters it from degradation independent of its kinase
activity (18). This raises the possibility that targeting this scaffolding
function of AURKA may be more effective and more specific for
MYCN, as the AURKA-binding domain ofMYCN is poorly conserved
with MYC (19) and a similar interaction between AURKA and MYC
has not been as well characterized (20). Small molecules have been
identified that bind to AURKA and alter its conformation in a way that
prevents binding to MYCN and result in rapid MYCN degrada-
tion (21). More recently, a chemical degrader approach has also been
taken (22). Although targeting the synthetic lethal interaction
between MYCN and the kinase activity of AURKA has to date
failed to provide an efficacious and specific therapeutic, it remains
possible that targeting the MYCN-stabilizing function of the
AURKA–MYCN complex will prove more successful. These and
other examples support the hypothesis that sustained and specific
inhibition of MYCN activity will require direct targeting of the
deregulated protein or the MYCN complex.

Barriers to Direct and Specific
Inhibition

Directly targeting MYCN poses substantial challenges that can be
generalized to many transcription factors, but also some challenges
that are unique to MYCN. Like many transcription factors, MYCN
functions in the nucleus, has no known enzymatic function, and
mediates its effects in the context of several multiprotein complexes
that involve numerous protein–protein interactions and protein–
DNA interactions. The protein–protein interaction surfaces in
particular tend to be large and lack the defined hydrophobic
pockets typically targeted by drug-like small molecules, and complex

formation tends to involve cooperation of multiple low-affinity inter-
actions that are individually difficult to target.

MYCN also poses some unique challenges as a drug target. The
N-terminal transcription–activating domains of MYC family proteins
are intrinsically disordered in their monomeric forms (23, 24), and the
C-terminal basic helix–loop–helix–leucine zipper (bHLH-LZ) domain
lacks deep hydrophobic pockets (25). Certain N-terminal domains
become structured in complex with binding partners, enabling limited
structural studies of these domains (26, 27), but interactome studies
have identified hundreds of interacting proteins (28, 29). Finally,
MYCN is highly homologous to MYC and MYCL within the basic
helix–loop–helix–leucine zipper (bHLH-LZ) domain and the 5 MYC
boxes that have been shown to mediate much of MYC family protein
function (2, 28, 30). Although there are some clear functional differ-
ences between MYC and MYCN, particularly with regard to their
respective interactions with MIZ1 (31), it remains a conceptual
challenge to inhibit the oncogenic function ofMYCNwhile preserving
the physiologic functions of MYC, including those in normal cell
division and in wound healing.

Although these challenges remain formidable, a clearly appealing
approach (outlined in Fig. 1) would be to identify small molecules that
bind to MYCN in complex with an essential and specific binding
partner, using structural information to guide drug design and/or
optimization, and then link the smallmolecule to an E3 ligase binder to
induceMYCN degradation. Here, we discuss the prior difficulties with
such an approach and the scientific and technological advances that
may now make it feasible. These concepts were discussed at a meeting
in November 2019 that brought together experts in pediatric cancer,
MYC andMYCN biology, structural biology, biochemistry, medicinal
chemistry, and protein degradation technology to address the goal of
directly targeting MYCN.

Targeting MYCN in Its Oncogenic
Context

Modern target-based drug discovery has relied on identifying the
structure of fragments or lead molecules bound to their target protein,
which then allows for the rational optimization of the molecule to
improve potency while preserving and/or improving physicochemical
drug-like properties. This process cannot be applied to intrinsically
disordered proteins such as MYC-family proteins in their monomeric
form. Although there have been efforts—and some progress—in
targeting the intrinsically disordered state of MYC (23, 32), the
compounds developed to date have generally suffered from low
potency and have not yet been turned successfully into credible lead
drug compounds. However, it has long been appreciated that MYC-
family proteins require binding partners to exert their tumorigenic
function, and individual domains of MYC-family proteins have been
demonstrated to form stable structures when complexed with inter-
acting proteins, most prominently the bHLH-LZ domain of MYC in
complex withMAX (25). Although the structure ofMYCN in complex
with MAX has not been solved itself, it is thought to be highly
homologous to the MYC–MAX complex. Indeed, MYC–MAX dis-
rupters have been identified and these also disrupt the MYCN–MAX
interaction, further supporting the concept that MYC family proteins
interact with MAX in a highly similar fashion (33). The structure of
other domains of MYC-family proteins have been solved in complex
with other interacting proteins, including KPNA1 (importin-a),
BIN1, WDR5, TBP, and AURKA (19, 24, 26, 27, 34–36). These
examples clearly demonstrate that MYC-family proteins can assume

Wolpaw et al.

Cancer Res; 81(7) April 1, 2021 CANCER RESEARCH1628

on August 18, 2021. © 2021 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst January 28, 2021; DOI: 10.1158/0008-5472.CAN-20-3108 

http://cancerres.aacrjournals.org/


ordered states in the context of multiprotein complexes, providing
a potential avenue for applying the tools of modern structure-based
drug discovery.

Although targeting MYCN in a structured complex with an
interacting protein has clear appeal, determining which interacting
protein(s) to choose is challenging. The identity of the full com-
plement of MYCN-interacting proteins has only recently been
catalogued. This has not allowed for a substantial narrowing of
focus, however, as interactome profiling has identified hundreds of
proteins that can complex with MYC-family proteins (28, 29). This
large number strongly suggests that there is not a single MYCN
complex, but rather a number of different complexes that may
differ in function and in their contribution to tumorigenesis and
tumor maintenance and that change in composition throughout
the cell cycle and across cell types or tumor types. Comparison
between MYC and MYCN-binding proteins has revealed large
numbers of common interactors, but also many MYCN-unique
interactors.

Before undertaking laborious structural biology and drug-discovery
campaigns against a given target, the MYCN-interacting protein
complex should first be demonstrated to be essential for tumor
maintenance in an appropriate in vivo model and not required for
survival of normal cells. Such models and the appropriate genetic
manipulation tools have only recently become available. For example,
human neuroepithelial stem (NES) cell–based models provide one
potentially appealing approach for this type of validation (37). NES

cells can be stably cultured and are amenable to gene editing tech-
nology.MYCN expression can be introduced, which results in medul-
loblastoma after orthotopic implantation (38), and similar models of
neuroblastoma are also under development. A moderate number of
interacting proteins can now be screened via genetic loss-of-function
approaches to prioritize those that (when lost) result in tumor regres-
sion in MYCN-driven tumors but do not impede the growth of
analogous MYC-driven tumors or of untransformed NES cells.
Although alternative models could be used for validation of the
centrality of a given interacting protein to MYCN's oncogenic func-
tion, this type of genetic validation is essential before initiating further
drug discovery efforts and appropriatemodels are now available orwill
soon be available.

Limitations to Obtaining Structures of
MYCN in Complex

Although structures of individual domains of MYC proteins have
been identified in complex with interacting proteins (see discussion
above), limitations in structural biology havemade it difficult to obtain
more extensive structural information about MYC complexes. All of
the three central techniques used in structural biology [X-ray crys-
tallography, nuclear magnetic resonance (NMR), and cryo-electron
microscopy (cryo-EM)] are likely to have value and play complemen-
tary roles in obtaining the structural information about MYCN
complexes needed to aid drug development. However, recent advances

MYCN

Genetic
validation of
interactions

MYCN- and MYC-
driven NES and

PDX models

MYCN- and MYC-
driven cellular models

DEL screen

Structure-guided
optimization

Prioritize
CTMs for

IND-enabling
studies

E3
binder

Purify MYCN
and MYC
protein

complexes

Figure 1.

Highlighted challenges and technological advances in identification and validation of a directMYCN-targeting compound. Biochemically derivedMYCN interactomes
have recently revealed a large number of potential complexes to target and are contrasted with MYC interactomes (not shown). Which complexes are essential to
tumormaintenance can nowbe identifiedusing genetic loss-of-function testing in appropriate in vivomodels [e.g., neural epithelial stem (NES) cell andPDXmodels].
Once oncogenic complexes are identified, these can be purified and used in structural studies, aided by advancements in cryo-EM technology. Challenges to the
identification of small-molecule inhibitors can be addressed by using a bind and degrade approach. DNA-encoded chemical libraries (DEL) screens can facilitate the
identification of binders unique to MYCN complexes as compared with MYC complexes. These compounds can then be linked to E3 ligase ligands to create
proteolysis-targeting chimeras (PROTAC), optimized using structure as a guide, and tested in cell line and mouse models to confirm degradation, ensure antitumor
activity, and determine selectivity. Once active and selective PROTACs are identified, they can be prioritized for IND-enabling studies and eventual clinical testing.
Interactomemodified fromhttp://pennlab.ca/research/#, protein structure from thePDB (https://www.rcsb.org/structure/5G1X), and drawing tools frommotifolio.
com.
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in the ability to use cryo-EM to obtain structures of complexes of a
variety of sizes is particularly important and is likely tomake obtaining
conformational data on oncogenic MYCN interactions more feasible.

Twoparallel approaches could be undertaken to obtain the structure
of purified MYCN complexes. The first, similar to what has been done
previously (26), including with AURKA (19), is to map interaction
domains using either NMR or cross-linking and mass spectroscopy,
and then to use this information to pursue crystallographic determi-
nation of substructures of the MYCN complex. The advantages of this
approach include identification of physiologically relevant MYCN
interactions that might be of lower affinity, and a possibility of
obtaining high-resolution structures of such complexes. However, an
interaction requiring a large portion of MYCN and/or requiring
multiple interactors may be difficult to probe using crystallography.
Cryo-EM offers an alternative that can provide Ångstr€om-level res-
olution of multiprotein complexes that are unlikely to crystallize in
their full-length form, such as transcriptional complexes (39). These
techniques can be used in a complementary fashion, with cryo-EM
contributing an overall structure of the complex and X-ray crystal-
lography or NMR focusing on smaller stable subcomplexes. Structural
insights from these complementary techniques can then be incorpo-
rated to provide higher-resolution views of individual side chains in
domains that may be less well visualized by cryo-EM. Lower-affinity
interactions can be stabilized by cross-linking of nearby residues.
These different modalities have been useful in the examination of
complexes involving intrinsically disordered proteins like MYC, for
example with the FACT complex (Facilitates Chromatin Transcrip-
tion; refs. 40, 41). In addition, cryo-EM has successfully identified
structures of such proteins when they form ordered structures in
complex (42), though NMR has been applied more widely.

In addition to playing a role in the determination of structures of
known MYCN complexes, advances in cryo-EM may also offer an
opportunity to identify novel complexes. Graphene oxide (GO) cov-
ered cryo-EM functionalized with affinity tags (43) can be used to
purify transient/lower-affinity MYCN complexes from tumors or cell
lysates directly on the cryo-EM grid. In addition to providing struc-
tural information simultaneously on multiple different MYCN com-
plexes, computational advances in cryo-EM analysis can potentially
allow for the determination of previously unidentified proteins in these
complexes (44).

Although multiple approaches could be pursued in parallel, the
ultimate goal should be both to solve atomic resolution structures of
oncogenic MYCN complexes that will be suitable for structure-based
drug development and to obtain purified protein complexes that can be
used for inhibitor screens. Given the described technological advances,
this is now a much more achievable goal.

Challenges in Inhibitor Screening and
Advances in Degrader Technology

Identifying small molecules that bind to transcription factors like
MYC proteins is a substantial hurdle. Even if an effective binder is
identified, a traditional therapeutic requires that the compound also
interferes with protein function, a formidable challenge for a protein
lacking enzymatic activity and functioning through protein–protein
and protein–DNA interactions. However, the advent of proteolysis-
targeting chimeras (PROTAC; also referred to as chimeric-targeting
molecules; ref. 45) over the past 5 years has rendered “undruggable”
targets such as MYCN potentially druggable. Rather than requiring a
specific inhibitor of MYCN's function, it may be sufficient to identify a
MYCN-specific or MYCN complex–specific binder that can be linked

to an E3 ubiquitin ligase ligand to drive the rapid ubiquitination and
degradation of MYCN. In addition to requiring only a binder (and not
an inhibitor), this approach also may allow for enhanced specificity
through choice of the E3 ligase that is engaged by the PROTAC. For
example, tissue-specific expression of E3 ligases has been described
previously (46), hence, recruiting an E3 ligase that is only expressed in
tumor cells or neural cells could enhance tumor-specific activity and
therapeutic index. Alternatively, by engaging only an E3 ligase with
expression limited to MYCN-high cells, a molecule that binds both
MYC and MYCN could be made into a de facto MYCN-specific
degrader. One potential drawback of a degrader approach is that
downregulation of the E3 ligase provides an additional potential
resistance mechanism. For this reason, it is important to choose an
E3 that is essential to tumor maintenance or to simultaneously apply
ligands for multiple different ligases.

Importantly, adopting a degradation approach shifts the challenge
in MYCN targeting to the identification of a molecule that specifically
binds to MYCN or the MYCN oncogenic complex, with little or no
binding to MYC or MYC complexes. Advances in small-molecule
screening technology have also made this challenge easier to address.
Fragment-based screening can identify low-affinity binders that can
then be evolved into high-affinity lead compounds using structure-
guided compound “growing” or by linking fragments together (47). If
high-quality structures are available, advances in computational dock-
ing can identify synthetically accessible potential binders (48). Par-
ticularly promising is the advent of DNA-encoded chemical libraries
(DEL) that have allowed hundreds of millions to billions of drug-like
compounds to be rapidly screened for affinity against proteins or
protein complexes of interest (49). Ideally, a systematic approach could
be taken to use DELs to (i) identify binders to MYCN and several
essentialMYCN complexes validated in vivo as critical for tumorigenic
functions of MYCN, followed by (ii) hit resynthesis and binding
validation, then (iii) linkage to a number of different E3 ligase ligands,
and (iv) analysis of the effect of the compounds on MYCN protein or
complex stability. Such a comprehensive screening and follow-up
campaign may exceed the capacity of academic investigators, but there
are companies that arewell tooled to perform such experiments andmay
be willing to participate in novel types of public–private partnerships.

Once validated binders and degraders are identified, structures
incorporating the MYCN complex, the compound, and the appropri-
ate E3 ligase can be solved to rationally optimize both bindingmoieties
as well as the linker, in addition to making modifications to enhance
predicted pharmacologic properties.

Rigorous Validation and
Characterization of CompoundActivity
and Molecular Diagnostic-Linked
Early-Phase Clinical Trials

Even if putative inhibitors of MYCN or a MYCN oncogenic
complex had been identified previously, properly modeling their
efficacy and specificity would have been a substantial challenge.
However, there are now available a range of genetically defined
models, both in vitro and in vivo, to validate potential inhibitors or
degraders. Cell lines that are functionally dependent upon MYCN
or MYC can both be used to demonstrate MYCN-specific degra-
dation and growth inhibition, with the caveat that changes in
expression in tissue culture of the E3 and of competing E3 sub-
strates may influence specificity. Ideally, compounds advanced to
in vivo testing for efficacy should demonstrate nanomolar potency,
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several-fold MYCN selectivity, and undergo pharmacokinetic test-
ing, including blood–brain barrier penetration analysis. The latter is
essential to understand how the drug might be used in patients with
brain tumors, as well as neuroblastomas that can metastasize to the
central nervous system.

For in vivo testing, both patient-derived xenograft models (PDX)
and genetically engineered mouse models (GEMM) are now widely
available for the relevant diseases. Extensive PDX models of neuro-
blastoma, medulloblastoma, and ATRTs (50–52) have the advantages
of being human cells with human MYCN and MYCN interactors, of
providing sufficient diversity to model genetic heterogeneity among
MYCN-driven tumors, and of providingMYC-driven tumors that can
be used as controls. Although in autochthonous neuroblastoma and
medulloblastoma GEMMs MYCN-interacting proteins are murine,
non-germline GEMMs using human cells enable models in which
interacting proteins are human. The GEMMs also do not provide as
much heterogeneity as PDXs. However, given the long-appreciated
role of MYCN in suppressing antigen presentation and creating an
immune-depleted tumor microenvironment (53–55), it is essential to
profile alterations in immune interactions upon MYCN depletion to
understand the possible engagement of the adaptive immune system
and how this might be enhanced. Orthogonal preclinical development
of drug candidates will be essential for prioritizing the optimal drug(s)
for early-phase clinical trials.

Advances in molecular diagnostics should allow for more precise
early-phase clinical trials. Patients can be selected that have tumors
with clear hyperactive MYCN signaling, both through copy-number
changes and transcriptional profiling. Response can be followed over
time both through traditional imaging modalities as well as through
detection of MYCN in cell-free circulating tumor DNA (56). Finally,
patients on early-phase clinical trial typically have suffered multiple
relapses and received extensive immunosuppressive therapy. If pre-
clinical testing demonstrates that drug efficacy depends on intact
immunity, it may be necessary to incorporate immune function
criteria into early-phase trials.

Conclusions
Driver transcription factors such as MYCN historically represent

“undruggable” targets. For MYCN, this has been due to limitations in

understanding the biochemistry and structural biology of MYCN
complexes, the inability to model those complexes in vivo, and the
difficulty in identifying small-molecule inhibitors of nonenzymatic
proteins like MYCN. No single advance, but rather progress on all of
these fronts suggests that it is time to revisit a direct targeting approach,
particularly in light of the continued failures of indirect approaches to
produce an effective therapeutic. Here, we describe how developments
in MYCN biology, structural biology (especially cryo-EM), drug
screening, modeling of pediatric cancers in mice, and PROTAC/
degrader technology have made direct targeting of MYCN a practical
and feasible goal, which we expect will produce an important new
therapeutic for several devastating childhood tumors.
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