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In Brief
PKC epsilon (PKCε) plays important
roles in behavioral responses to alcohol
and in anxiety-like behavior, making it a
potentialdrug target for reducingalcohol
consumption and anxiety. Here, a
chemical genetic screen and mass
spectrometry identified 39 direct
substratesofPKCε inmousebrain.They
were prioritized using several public
databases (LINCS-L1000, STRING,
GeneFriends, GeneMANIA) to predict
interactions between them and PKCε.
Many were novel and broadly fell into
three functional categories: cytoskeletal
regulation, morphogenesis, and
synaptic function.
Highlights
• Identification of direct PKCε substrates in mouse brain with chemical genetics.• Utilized AS-PKCε and N6-benzyl-ATPγ for covalent capture of substrates.• Validated direct PKCε substrates using in vitro methods.• Most substrates associated with cytoskeletal, morphological, or synaptic function.• Several substrates involved in alcohol-, stress-, and anxiety-related phenotypes.
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RESEARCH
Chemical Genetic Identification of PKC Epsilon
Substrates in Mouse Brain
Michael P. Dugan1 , Laura B. Ferguson1, Nicholas T. Hertz2,3, Robert J. Chalkley3 ,
Alma L. Burlingame3, Kevan M. Shokat2, Peter J. Parker4,5, and Robert O. Messing1,*
PKC epsilon (PKCε) plays important roles in behavioral
responses to alcohol and in anxiety-like behavior in ro-
dents, making it a potential drug target for reducing
alcohol consumption and anxiety. Identifying signals
downstream of PKCε could reveal additional targets and
strategies for interfering with PKCε signaling. We used a
chemical genetic screen combined with mass spectrom-
etry to identify direct substrates of PKCε in mouse brain
and validated findings for 39 of them using peptide arrays
and in vitro kinase assays. Prioritizing substrates with
several public databases such as LINCS-L1000, STRING,
GeneFriends, and GeneMAINA predicted interactions be-
tween these putative substrates and PKCε and identified
substrates associated with alcohol-related behaviors,
actions of benzodiazepines, and chronic stress. The 39
substrates could be broadly classified in three functional
categories: cytoskeletal regulation, morphogenesis, and
synaptic function. These results provide a list of brain
PKCε substrates, many of which are novel, for future
investigation to determine the role of PKCε signaling in
alcohol responses, anxiety, responses to stress, and other
related behaviors.

PKC epsilon (PKCε) is a member of the PKC family of
serine-threonine kinases, which transduce signals carried by
lipid second messengers (1). Studies with KO mice and se-
lective kinase inhibitors have revealed that PKCε plays an
important role in behavioral responses to alcohol and in
anxiety-related behavior. Compared with WT littermates,
PKCε KO (Prkce−/−) mice show markedly reduced ethanol
consumption, and a small molecule inhibitor of PKCε reduces
alcohol consumption in mice (2–4). In addition, Prkce tran-
scripts are highly expressed in the brains of in-bred and
selected lines of mice that drink high amounts of ethanol (5, 6).
Prkce−/− mice also display reduced anxiety-like behavior with
reduced levels of the circulating stress hormones ACTH and
corticosterone and reduced expression of corticotropin-
releasing factor in the central amygdala (7, 8). Therefore,
PKCε has become of considerable interest as a central
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nervous system target for reducing alcohol consumption and
anxiety (9–11).
Because PKCε is an attractive drug target, we sought to

identify additional proteins in the brain that act within PKCe
signaling pathways with the assumption that they could be
valuable for developing therapeutics. To identify direct PKCe
substrates, we used a chemical-genetic approach combined
with mass spectrometry (12, 13). We identified 39 proteins in
mouse forebrain lysates in which we validated sites of phos-
phorylation using peptide arrays and in vitro kinase assays.
Some like neuromodulin and myristoylated alanine-rich PKC
substrate (MARCKS) had been previously identified as PKC
substrates (14, 15), but most were novel. Bioinformatic anal-
ysis revealed involvement of these proteins in cytoskeletal
function, morphogenesis, and synaptic function. We priori-
tized putative substrates based on whether there was existing
support for interactions with PKCe in publicly available data-
bases, such as LINCS-L1000, STRING, GeneFriends, and
GeneMANIA. To formulate hypotheses regarding PKCe
involvement in alcohol intake and anxiety, we further mined
publicly available databases and found that several of these
proteins have been previously associated with alcohol-related
behaviors, anxiety-related behaviors, or the actions of anxio-
lytic benzodiazepines. Several are membrane transporters,
receptors, or enzymes, which could be considered potential
candidates for drug discovery. This database of putative PKCe
substrates will provide a useful resource for those groups
wishing to investigate the function of PKCe and potentially
could serve as useful biomarkers of dysregulated PKCe in
disease or for therapeutic development.
EXPERIMENTAL PROCEDURES

Animals

We used male F2 generation WT or Prkce−/− mice on a C57BL/6J x
129S4 background (16). Mice were group-housed in temperature- and
humidity-controled rooms with free access to food and water under a
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PKCe Substrates in Mouse Brain
12-h light/dark cycle (lights on at 7:00 AM). Experiments began when
mice were 2 to 3 months old. Experiments were approved by the
Institutional Animal Care and Use Committee at The University of
California San Francisco and The University of Texas at Austin and
complied with the ARRIVE guidelines and the National Institutes of
Health Guide for the Care and Use of Laboratory Animals (17).

Substrate Labeling

Mice were euthanized with CO2 and decapitated. Their brains were
rapidly removed, rinsed in ice-cold PBS, and quickly transferred to ice-
cold RIPA buffer (G-Biosciences; Cat No. 786-490) containing 25 mM
Tris [2-Amino-2-(hydroxymethyl)propane-1,3-diol]–HCl, 150 mM NaCl,
1% NP-40, 1% sodium deoxycholate, 0.1% SDS, pH 7.4 with added
Halt Protease Inhibitor Cocktail (Thermo Fisher Scientific; Cat No.
78440). The tissue was homogenized using a glass Dounce tissue
grinder, and the homogenate was nutated at 4 ◦C for 30 min. The
homogenate was centrifuged at 4 ◦C for 5 min at 18,000g, and su-
pernatant proteins were collected and quantified using the Bradford
assay method with bovine serum albumin (BSA) as a standard (18).
Lysates were diluted to 20 mg/ml of total protein in RIPA buffer.

Proteins in lysates were thiophosphorylated in a reaction buffer
containing 20 mM Hepes (pH7.4), 0.1 mM EGTA, 0.03% Triton X-100,
10 mM MgCl2, 1 mM DTT, 1 mM β-mercaptoethanol, 0.59 mM L-
⍺-phosphatidylserine (Avanti Polar Lipids; Cat No. 840032), 0.1 mM
ATP, 5.0 mM GTP, and 5 mg protein lysate in a final volume of 500 μl in
the presence or absence 0.2 μM AS-PKCε (19). The reaction was
allowed to proceed for 5 min at 37 ◦C. Then, N6-benzyl A*TP-γS
(BioLog Life Sci Inst; Cat No. A 060) was added to a final concen-
tration of 0.25 mM, and the reaction was continued for another 10 min
at 37 ◦C. The reaction was stopped by adding EDTA to a final con-
centration of 500 mM.

Covalent Capture and Analysis of Thiophosphorylated Proteins

Putative substrates were isolated and identified as described, with
slight modification (13, 20). Brain lysates were denatured by adding
solid urea (60% by volume) and 1M tris(2-carboxyethyl)phosphine to a
final concentration of 10mMand incubating themixture at 55 ◦C for 1 h.
Proteinswere then digested by diluting the urea to 2Mby the addition of
100 mM NH4HCO3 (pH 8.0), adding additional tris(2-carboxyethyl)
phosphine to 10 mM final concentration and trypsin (Promega; Cat No.
VA9000) 1:25 by weight. The reaction solution was adjusted to pH 7.8
using 5%NaOH. Lysateswere digested overnight (6–17 h) at 37 ◦Cuntil
the solution was very clear. The solution was then acidified with 0.5%
trifluoroacetic acid (TFA) and desalted using a Sep-Pak C18 column
(Waters Corp;WAT051910). After the columnwaswashedwith 25ml of
0.1% TFA in water, the peptides were eluted slowly with 0.8 ml 0.1%
TFA/70% acetonitrile and then 0.2 ml acetonitrile. The solution con-
taining the desalted peptides was reduced to ~35 μl using a SpeedVac
concentrator. The pH of the peptides was adjusted by adding 40 μl of
200 mM Hepes pH 7.0 with 75 μl acetonitrile and brought to pH 7.0 by
the addition of 5%NaOH (approximately 8 μl). The peptide solution was
then added to 100 μl iodoacetyl beads (Thermo Scientific; Cat No.
53155) equilibrated with 200 mM Hepes (pH 7.0) and incubated with
end-over-end rotation at room temperature in the dark for 12 to 16 h.
The beads were then added to small disposable columns, washed with
a buffer of H2O, 5MNaCl, 50% acetonitrile, 5% formic acid, and 10mM
DTT, followed by elution with 100 μl and 200 μl (300 μl total) 1 mg/ml
oxone (Sigma-Aldrich; Cat No. 228036), desalted, and concentrated
using a 10 μl C18 ZipTip (Millipore; Cat No. Z720070) pipette tip eluting
into 60 μl total volume.

The resulting phosphopeptides were concentrated to 12 μl on a
freezing SpeedVac concentrator, and 5 μl were separated immediately
using a 2 to 50% acetonitrile gradient over 30 min (total run time of
53 min) on a nanoACQUITY UPLC System (Waters Corp) reversed
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phase 75-micron capillary UPLC column on-line to an LTQ Velos
Orbitrap mass spectrometer (Thermo Fisher Scientific). Two runs were
performed on each sample. In each case, MS1 scans from m/z 350 to
1400 were acquired at a resolution of 30K. In one run, this was fol-
lowed by HCD fragmentation analysis at a collision energy of 35 and a
resolution of 15K of the six most intense multiply charged peaks. In
the second run, ETD fragmentation was acquired on the six most
intense precursors and fragments were measured in the ion trap.

Peak lists were generated by using PAVA (UCSF in-house software)
and searched on Protein Prospector version 5.9.4 (https://prospector.
ucsf.edu/prospector/mshome.htm). The database queried consisted
of all mouse entries from a Swiss-Prot database downloaded on July
6th 2011 (36,620 sequences). No fixed modifications were considered;
variable modifications included oxidation of methionine, phosphory-
lation of serine and threonine, pyroglutamate formation from peptide
N-terminal glutamine, and protein N-terminal acetylation with up to
four modifications total allowed per peptide. A precursor mass toler-
ance of ± 20 ppm was allowed. For HCD, the fragment tolerance was
also 20 ppm; for ETD data, a tolerance of 0.6 Da was allowed. Results
were thresholded at an expectation value of 0.01. Modification site
localization threshold was set to a SLIP score of 6, which corresponds
to a 95% localization confidence per spectrum and typically a global
false localization rate of around 1%.

Peptide Array

Peptide arrays containing all identified phosphopeptides were
generated by the Francis Crick Institute (21). Each array had 184
peptides, each 12-amino-acids in length, derived from the phospho-
peptides identified in the covalent capture analysis. The array included
control peptides with identified phosphorylation sites and potential off-
target serine or threonine residues substituted with alanine residues.
Peptide arrays were synthesized using an Intavis ResPepSL Auto-
mated Peptide Synthesizer (Intavis Bioanalytical Instruments AG). Ar-
rays were generated on a cellulose membrane through cycles of N(a)-
Fmoc amino acid coupling via activation of carboxylic acid groups with
diisopropylcarbodiimide in the presence of ethyl cyano(hydroxyamino)
acetate (Oxyma Pure) followed by removal of the temporary α-amino
protecting group with piperidine. After chain assembly, side chain
protection groups were removed by treating membranes with a
deprotection cocktail (20 ml 95% trifluoroacetic acid, 3% triisopro-
pylsilane, 2% water for 4h at room temperature) then washing (4×
dichloromethane, 4× ethanol, 2× water, 1× ethanol) prior to air drying.

The arrays were incubated overnight at 4 ◦C in blocking buffer
(40 mM Tris–HCl, pH 7.4, 0.02% Triton X-100, 3% w/v BSA) with
constant nutation. The next day, the arrays were incubated in wash
buffer (40 mM Tris–HCl, pH 7.4, 0.02% Triton X-100) for 10 min, three
times at room temperature. Then, the arrays were incubated for 30 min
at 37 ◦C with constant nutation in kinase buffer (40 mM Tris–HCl, pH
7.4, 5 mM MgCl2, 0.2% Triton X-100, 0.5, 1 mg/ml BSA, and 100 μM
ATPγS (Abcam; Cat No. ab138911)) containing 2.5 ng/μl PKCε kinase
domain. To stop the reaction, EDTA was added to the buffer to a final
concentration of 100 mM. The arrays were briefly rinsed with wash
buffer before being incubated in wash buffer containing p-nitrobenzyl
mesylate (PNBM) (Abcam; Cat No. 138910) added to a final concen-
tration of 2.5 mM. The reaction was allowed to continue overnight at 4
◦C. The arrays were then washed with wash buffer for 10 min, three
times at room temperature. Afterward, the arrays were incubated for
2h at room temperature with rabbit anti-thiophosphate ester antibody
(Abcam; Cat No. ab92570; 1:2000) in blocking buffer, which was
composed of TBS-T (10 mM Tris, 150 mM NaCl, 0.05% w/v Tween-
20) plus 5% (w/v) nonfat milk. The arrays were then washed with
TBS-T for 10 min, three times at room temperature. The arrays were
then incubated with donkey anti-rabbit-HRP (Sigma-Aldrich; Cat No.
AP182P; 1:5000) for 1 h at room temperature in blocking buffer.
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PKCe Substrates in Mouse Brain
Finally, the arrays were washed with TBS-T for 10 min, three times at
room temperature. Immunoreactivity was detected by incubating ar-
rays in SuperSignal West Pico PLUS Chemiluminescent Substrate
(Thermo Fischer Scientific; Cat No. 34577) for 5 min and imaging them
with a ChemiDocMP imager (Bio-Rad). Thiophosphorylation signals
were quantified with Image Lab Software 6.1 (Bio-Rad).

Purification and Thiophosphorylation of GST-Tagged Peptides

Some peptides were also analyzed by in vitro thiophosphorylation.
Peptide sequences (7–12 amino acids in length) derived by mass
spectrometry were utilized to identify corresponding nucleic acid se-
quences in each gene’s RefSeq file. Confirmed DNA sequences were
cloned into pGEX-6p-2 (Sigma-Aldrich; Cat No. GE28-9546-50) at
BamH1/XhoI sites in frame with the GST purification tag sequence and
transformed into BL21(DE3) Escherichia coli cells for expression.

Following expression and purification with a Pierce GST Spin Pu-
rification Kit (Thermo Fisher Scientific; Cat No. 16106), GST-tagged
substrate peptides containing the putative phosphorylation site or
corresponding alanine mutation were subjected to thiophosphor-
ylation. PKCε kinase domain (2.5 ng/μl) was added to a 40 μl reaction
containing kinase buffer (20 mM Hepes [2-[4-(2-Hydroxyethyl)piper-
azin-1-yl]ethane-1-sulfonic acid], pH 7.4, 10 mM MgCl2, 0.1 mM
EGTA, 0.3% Triton-X-100, 1 ng/μl BSA) and 1 mM of ATPγS. Each
GST-tagged peptide (2 μg) was added to a seperate reaction. The
reaction proceeded for 30 min at 37 ◦C in a Thermo-Mixer shaking at
1000 RPM and was then stopped by the addition of 10 μl 500 mM
EDTA (final concentration: 100 mM). Thiophosphorylated peptides
were alkylated by adding 2.5 μl 50 mM PNBM in DMSO (final con-
centration: 2.5 mM PNBM, 5% DMSO). Samples were incubated for
1h at room temperature with constant nutation, and then 13.1. μL of
5X Laemmli sample buffer was added, and 0.25 μg of each GST-
tagged peptide was separated by SDS-PAGE on 12% Tris-Glycine
gels. Proteins were then transferred to LF-PVDF membranes, which
were blocked for 1 hour in blocking buffer at room temperature. The
membranes were then incubated in blocking buffer with a rabbit anti-
thiophosphate ester antibody (Abcam; Cat No. ab92570, 1:5000) and
mouse anti-GST antibody (Invitrogen; Cat No. MA4-004; 1:5000)
overnight at 4 ◦C. The next day, membranes were washed with TBS-T
for 5 min, five times at room temperature. The membranes were then
incubated in blocking buffer with goat anti-rabbit StarBright Blue 700
(Bio-Rad; Cat No. 12004162; 1:5000) and goat anti-mouse StarBright
Blue 520 (Bio-Rad; Cat No. 12005867; 1:5000) for 1h at room tem-
perature. The membranes were washed with TBS-T for 5 min, six
times at room temperature and imaged with a ChemiDocMP imager
(Bio-Rad). The thiophosphorylation and GST signal from each sub-
strate peptide was quantified using Image Lab Software 6.1 (Bio-Rad).

Bioinformatics

Prediction of Functional Interactions Between PKCε and Putative
Substrates–To determine if evidence exists supporting functional
interactions between PKCε and the putative PKCε substrates vali-
dated by in vitro kinase assays, we mined publicly available datasets.
This analysis included gene expression signatures resulting from
PKCε knockdown and overexpression in the NIH L1000 database,
protein-protein interaction (PPI) networks in the STRING and Gene-
MANIA databases, and gene coexpression data in GeneFriends.

LINCS-L1000 (clue.io) is a database that catalogs the effects of
pharmacological or genetic perturbation on gene expression in a
number of human cell lines (22). We downloaded the differential gene
expression signatures for pharmacological and genetic perturbations
(LINCS-L1000 level 5 data) from Gene Expression Omnibus (Phase I:
GSE92742, Phase II: GSE7013), where each signature is the result of a
perturbation, cell line, and time point for which differential expression
was assessed. We identified the PKCε subset of L1000 data using the
signature id field from the metadata file available on Gene Expression
Omnibus. We defined each signature as genes with |z| > 2 as rec-
ommended by the Broad Institute (personal communication). To
determine which genes are most likely interacting with PKCε, we
found the overlapping genes between the putative substrate gene list
and the genes that were affected in opposite directions by PKCε
knockdown and overexpression. Analyses were implemented in R
versions 3.4.4 and 3.5.0.

We determined which putative PKCε substrates are known or are
predicted to interact based on information in STRING v11.5 b (string-
db.org) (23) and GeneMANIA (genemania.org) (24) databases of
known and predicted PPIs. STRING and GeneMANIA databases uti-
lize different sources of primary information regarding known and
predicted PPIs, so we performed the analysis with both as a com-
plementary approach. Using STRING, we ran the analysis on PKCε
and the 39 validated substrates using low, medium, and high confi-
dence thresholds and Mus musculus as the species. In GeneMANIA,
we ran the analysis using the query-dependent weighting method,
Mus musculus as the species, max resultant genes set to zero, and
max resultant attributes set to 10.

We identified genes that are coexpressed with Prkce using infor-
mation from GeneFriends v5 (genefriends.org). GeneFriends is a
functional genomics tool that can assign putative functions to poorly
annotated genes or can identify and rank new candidate genes related
to a disease or biological process from a seed list of genes (25, 26). It
is based on a gene coexpression map that describes which genes
tend to be activated (increased in expression) and deactivated
(decreased in expression) simultaneously in a large number of RNA-
seq data samples. Because the samples originate from a wide range
of conditions, the coexpression map reflects which genes in general
tend to be altered simultaneously and are thus under similar tran-
scriptional regulation. We used mouse (Mus musculus), Gene Symbol,
and Prkce as the input search terms. Association was defined as the
gene being ranked in the top 5% of genes coexpressed with Prkce
(which corresponded to the top 1351 correlated genes).

Phosphosite Databases and Amino Acid Motif Logo Creation

We determined if the putative phosphorylation sites are present in
two databases of kinase-substrate relationships, PhosphoSitePlus
and ChemPhoPro (27, 28). PhosphoSitePlus is a curated post-
translational modification database. The ChemPhoPro database pro-
vides predictions regarding target selectivity of 20 kinase inhibitors
against 406 kinases using three different cell lines (HL60, MCF7, and
NTERA2).

To determine if the sites we identified are in the context of a motif
likely to be phosphorylated by PKCε, we generated an amino acid
motif logo around the sites of modification identified in the present
study ( ± 7 amino acids) using the Sequence Logo tool on Phospho-
SitePlus with default settings (27). We compared the amino acid motif
logo generated from our data to the amino acid motif logo generated
from the sites of modification for PKCε in the PhosphoSitePlus
v6.6.0.4 database ( ± 7 AA) and to consensus phosphorylation site
motifs for PKCs (29–31).

Functional Enrichment Analysis

To predict functional associations between PKCε and its puta-
tive substrates, we used the functional enrichment analysis tools
in STRING. Prkce and each putative substrate gene were queried
in STRING to assess the enriched gene ontology (GO) terms
broadly separated into three categories: biological processes,
molecular functions, and cellular components. Terms were
considered significantly enriched if they had FDR-corrected
p-value <0.05.
Mol Cell Proteomics (2023) 22(4) 100522 3
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PKCe Substrates in Mouse Brain
Substrates Related to Alcohol and Stress

To generate hypotheses regarding mechanisms of action for PKCε
in alcohol-related behaviors, we compared our putative substrate
list to a list of genes related to ethanol-consumption that was
curated from mouse gene knockout, gene overexpression, and
microarray data (found on the INIA IT-GED website at http://inia.icmb.
utexas.edu/).

Because Prkce−/− mice show prolonged sedative and ataxic re-
sponses to benzodiazepines and an antianxiety phenotype, we deter-
mined whether any putative substrates were also benzodiazepine
targets (2, 7). We mined the L1000 database to identify benzodiazepine
targets in a manner similar to what we did for the Prkce signatures. We
first identified benzodiazepine agonists and antagonists that have been
profiled in L1000 and defined each signature as genes with |z| > 2. We
then found the overlapping genes between the putative substrate gene
list and the genes that were affected in opposite directions by
benzodiazepine agonists and antagonists. Analyses were implemented
in R versions 3.6.3. Additionally, we compared the prioritized putative
substrate list to a list of stress-related genes that was curated from
mouse gene expression data after different kinds of stressors including
acute, sub-chronic or chronic restraint, cold swim, sub-chronic or
chronic variable stress, unpredictable chronic mild stress, chronic so-
cial defeat, early life stress, electric footshock (or contextual fear
conditioning), and auditory fear conditioning with or without immobili-
zation (found on the Stress Mice portal at http://hpc-bioinformatics.
cineca.it/stress_mice/main) (32).

Experimental Procedures and Statistical Rationale

For the thiophosphorylation and covalent capture experiment, four
groups of male mice were analyzed in three experiments. The first
experiment contained samples from a group of five WT mice. The
second experiment had samples from a group of two WT and two
Prkce−/− mice. The third experiment contained samples from two WT
mice. The resulting phosphopeptides detected in each sample were
analyzed in two runs by mass spectrometry using HCD and ETD
fragmentation.

We used cellulose peptide arrays containing all phosphopeptides
identified in the covalent capture analysis in a thiophosphorylation
reaction with the PKCε kinase domain to validate phosphorylation
sites. The array included control peptides with identified phosphory-
lation sites and potential off-target serine or threonine residues
substituted with alanine residues. Three peptide arrays were used, and
the results were averaged across the three arrays. A peptide was
considered validated when its thiophosphorylation signal decreased
by more than 50% upon replacement of the putative phosphorylation
site residue with alanine.

GST-tagged peptides with and without alanine mutations at
candidate phosphorylation sites were analyzed by in vitro thio-
phosphorylation. Thiophosphorylation signal and GST signal was
identified by Western blot analysis in three replicate experiments for
each GST-tagged peptide. The ratio of thiophosphorylation signal to
GST signal was determined, and the percent change in thio-
phosphorylation signal was normalized to the GST-tagged peptide
without the alanine mutation. Differences in phosphorylation signal
between mutant and native peptides were compared by unpaired,
two-tailed t-tests and considered significantly different where p< 0.05.

Bioinformatic analysis was conducted on validated substrates to
identify PKCε interacting partners, functional associations with PKCε,
and their relation to alcohol and stress. Gene signatures were defined
as genes with |z| > 2 and terms were considered significantly enriched
if the FDR-correct p-value <0.05. Unless otherwise stated, the bio-
informatic analyses were conducted in R versions 3.4.4, 3.5.0, or
3.6.3.
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RESULTS

PKCε Substrate Identification

To identify PKCε substrates, we used AS-PKCε, which
contains an M486A mutation that allows it to use bulky ATP
analogs like N6-benzyl-ATP as phosphate donors, while
native kinases cannot generally use these ATP analogs (19).
To enrich for labeled substrates, we used N6-benzyl-ATP-γS
instead of N6-benzyl-ATP to transfer a thiophosphate group
to substrates and produce a highly specific tag that can be
covalently purified from complex mixtures of proteins and
subsequently analyzed using mass spectrometry (13). To
determine whether thiophosphorylation in the lysates was
specific for AS-PKCε, we incubated forebrain lysates from WT
mice with AS-PKCε and N6-benzyl-ATP-γS in the presence or
absence of a PKC activator, phorbol 12-myristate, 13-acetate
(0.2 μM) and a specific AS-PKCε inhibitor, 1-napthyl-PP1
(20 μM) (19). Thiophosphorylation was similar with or without
addition of phorbol 12-myristate, 13-acetate but drastically
reduced in samples incubated with 1-napthyl-PP1 or without
AS-PKCε (Fig. 1A).
We then conducted three experiments using mouse fore-

brain lysates from four groups of male C57BL/6J x 129S4
mice and identified 53 proteins with their sites of phosphory-
lation that were detected in at least two of the experiments in
samples in which AS-PKCε was present (supplemental
Table S1). All peptides with their associated gene symbols
and UniProt accession numbers, m/z values, posttranslational
modifications, retention times, scores, and associated frag-
mentation method are listed in supplemental Table S2. A total
of 1575 phosphopeptide spectra were detected with 90%
found in samples containing AS-PKCε (supplemental
Table S3).
HCD and ECD fragmentation yielded 86 peptides in com-

mon, but the HCD method detected far more peptides than
the ECD method (supplemental Table S4). We included pep-
tides detected by either fragmentation method in subsequent
analyses. In one experiment, we compared WT and Prkce−/−

samples to see if using knockout tissue would increase the
yield of phosphopeptides. Surprisingly, however, we found
fewer peptides in samples from Prkce−/− mice, and 9 of the 19
peptides unique to Prkce−/− samples were detected in other
experiments that used only WT tissue (supplemental
Table S5), suggesting that most putative PKCε substrates
could be detected using WT tissue.

Substrate Validation

We next confirmed putative PKCε substrates identified from
our covalent capture experiments using a peptide array with
native peptides and mutant peptides containing alanine resi-
dues at identified phosphorylation sites (Fig. 1B and
supplemental Table S6). MARCKS is a known substrate of
PKCε, but its peptide array signal was very low (14). To further
investigate its validity, we generated GST-tagged substrate
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FIG. 1. AS-PKCε thiophosphorylation and PKCε substrate peptide array. Whole brain mouse tissue lysates were incubated in a kinase
reaction with N6-benzyl ATP-γS in the presence or absence of AS-PKCε, PMA, or 1NA-PP1. A, lysates probed for thiophosphorylation with anti-
thiophospho antibody. B, average of three peptide array chemiluminescent images. Images of each individual array are available as
supplemental Fig. S3. The position on the peptide array is outlined for each putative substrate with its corresponding gene name in the top right
corner of each outlined box. Boxes with underlined gene names show peptides that were only identified in one experiment. Two boxes with
capitalized gene names were identified in the human Swiss-Prot database but did not have an equivalent in the mouse Swiss-Prot (see
supplemental Table S8). These were excluded from the bioinformatics analyses. Boxes outlined in blue designate irrelevant peptides put on
arrays by mistake. Empty, unlabeled boxes did not have a peptide present. PKCε, PKC epsilon; PMA, phorbol 12-myristate, 13-acetate.
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peptides (7–12 amino acids in length) of MARCKS and five
other proteins that were borderline or below the cutoff criteria
for validation by the peptide array. These included G protein–
regulated inducer of neurite outgrowth 1 (GRIN1), metabo-
tropic glutamate receptor 5 (mGluR5), diacylglycerol kinase
gamma (DGK-gamma), diacylglycerol kinase zeta (DGK-zeta),
and excitatory amino acid transporter 1 (GLAST-1). We also
generated GST-tagged substrate peptides (12 amino acids in
length) for seven putative PKCε substrates identified in our
covalent capture experiments that were mistakenly excluded
from the peptide array. These included dynamin-3, microtu-
bule-associated protein 4 (MAP-4), myelin basic protein,
myotubularin, serin/threonine-protein phosphatase 4 regula-
tory subunit 4 (PPP4R4), and two peptides corresponding to
40S ribosomal protein S15 (RPS15). We subjected these
peptides and their corresponding alanine mutant controls to
in vitro thiophosphorylation and detection by Western blot
analysis. From these substrate candidates, we confirmed that
PKCε phosphorylates peptides corresponding to GRIN1,
mGluR5, MARCKS, GLAST-1, Dynamin-3, MAP-4, PPP4R4,
Mol Cell Proteomics (2023) 22(4) 100522 5
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and RPS15 at S55 (Fig. 2), but not DGK-gamma, DGK-zeta,
myelin basic protein, Myotubularin, or RPS15 at S138
(supplemental Fig. S1). The percent change in each thio-
phosphorylation signal along with the statistical analysis are
available in supplemental Figure S2. Therefore, using the
peptide array and Western blot analysis of GST-tagged pep-
tides, we confirmed phosphorylation sites in 39 of the putative
substrates (Table 1).
Existing Support for Functional Interactions with PKCe in
Publicly Available Databases

We investigated whether there was evidence from previous
research that supported interactions between PKCε and these
39 validated substrates. To do this, we mined publicly avail-
able databases for relevant information including the
following: (1) gene expression signatures resulting from PKCε
knockdown and overexpression (L1000/CMap database), (2)
PPI networks (STRING and GeneMania databases), and (3)
gene coexpression data (GeneFriends database). Out of the
39 putative substrates, gene expression levels of 33 were
measured or inferred in the L1000 database after manipulation
of PKCε. Genes for three of these substrates were affected in
an opposing manner by PKCε knockdown and overexpression
(Table 2): Mapre2, Rbm14, and Tubb2a.
FIG. 2. Representative western blots of validated GST-tagged PK
amino acids in length) and alanine controls were subjected to in vitro thiop
and corresponding alanine control peptide. A, four of the six putative sub
array. B, four of the seven putative substrate peptides that were mistak
phosphate ester antibody representing level of thiophosphorylation for
peptide in reaction. (Bottom) Multiplex image of α-thiophosphate ester a
thiophosphorylation signal compared with their corresponding alanine co
test (see supplemental Fig. S2). PKCε, PKC epsilon.
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The STRING PPI network for PKCε and the 39 substrates is
depicted in Figure 3 (medium confidence threshold) with the
nodes colored by “synapse,” “cytoskeleton organization,” and
“actin binding” annotations, which were highly enriched Gene
Ontology terms in the network (supplemental Table S7). We
found that 17 of the putative substrates were already noted to
interact with PKCε at a low confidence threshold, three at a
mediumconfidence threshold, and twoat ahighconfidence level
(Table 2). The PPI networks at each confidence level contained
significantlymore interactions than expected for a random set of
proteins of the same size. Such enrichment suggests that the
proteins are biologically connected as a group.
The GeneMANIA analysis also produced a functional asso-

ciation network of PKCε and its putative substrate genes. This
network revealed that three identified substrates are already
known to physically interact with PKCε, five were predicted to
have interactions with PKCε, and five were coexpressed with
PKCε (Fig. 4). GeneMANIA identified both MARCKS and neu-
romodulin as having physical interactions with PKCε, and both
are known substrates of PKCε (14, 15). GeneMANIA did not find
any putative substrate genes that are colocalized or share
protein domains with PKCε. However, several substrates
shared protein domains or were colocalized with each other.
Finally, we queried the GeneFriends database to find genes

with expression patterns that are correlated with PKCε,
Cε substrate peptides. GST-tagged PKCε substrate peptides (7–12
hosphorylation. Each peptide is shown with its site of phosphorylation
strate peptides that were borderline to the cutoff criteria on the peptide
enly absent from the peptide array. A and B, (Top) signal from α-thio-
each peptide. (Middle) Signal from α-GST antibody representing total
nd α-GST signals. Each validated peptide has a significant increase in
ntrol across three experiments as measured by an unpaired two-tailed t



TABLE 1
Putative PKCε substrates from mass spectrometry and confirmed by peptide array or Western blot analysis
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TABLE 2
Bioinformatics analyses of putative PKCε substrates

Gene name

PKCε targets Alcohol Benzo Stress

L1000
PPI CoEx

GeneFriends (Pearson corr. Coeff.)
INIA IT GED L1000 Stress mice

STRINGdb GeneMANIA

Mapre2 X X X X (0.61) X X
Tubb2a X X X (0.59) X X
Gap43 X X X (0.54) X X X
Mapt X X X (0.57) X X
Syn1 X X X (0.87) X X
Agap2 X (med) X X (0.82) X X
Rph3a X X (0.77) X X
Caskin1 X X (0.51) X
Grm5 X X (0.87) X
Map2 X X (0.76) X
Brsk1 X X (0.72)
Rasgrp2 X X X X
Itsn1 X X X
Phactr1 X (0.84) X X X
Dync1h1 X X X
Marcks X (high) X X X
Pogz X X X
Actg1 X X X
Slc1a3 X (0.60) X
Gprin1 X (0.70) X
Rbm14 X X
Map1a X (0.78) X
Fam126b X X
Mtss2 X X (0.46) X X
Ppp4r4 X X X
Marcksl1 X (high) X X
Ndufb4 X X
Prrc2c X X
Srsf2 X X
Ptn X X
Agap1 X (0.45) X
Tbc1d10b X
Tuba1b X
Twf1 X
Ppm1h X
Abi1
Dnm3 X (0.60) X
Map4 X (0.42) X
Rps15 X
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reasoning that such genes could be acting in similar pathways
and be potentially interacting. We found 19 genes that are
coexpressed with PKCε (Table 2).
Taken together, genes for 29 of the 39 putative PKCε sub-

strates were identified by at least one of these approaches
(Table 2), and genes for 12 were identified in at least two of these
combined approaches: Mapre2, Tubb2a, Gap43, Mapt, Syn1,
Agap2,Rph3a,Caskin1,Grm5,Map2,Brsk1, andMtss2 (Table2).
These resultsprovide functional evidence linkingPKCεand these
29 candidate substrates. The remaining 10 of the substrates we
validated in the peptide array andWestern blot analyses have no
previously known association with PKCε in these four databases
and represent potentially novel PKCε substrates (Table 2).
8 Mol Cell Proteomics (2023) 22(4) 100522
Phosphosite Databases

To determine if the sites we identified are in the context of a
motif likely to be phosphorylated by PKCε, we compared the
amino acid motif logo generated from our data to the amino
acid motif logo generated from the sites of modification for
PKCε in the PhosphoSitePlus v6.6.0.4 database ( ± 7 AA) (27).
The motifs look strikingly similar for the amino acids at posi-
tions −3 and −2 amino-terminal to the phosphorylated site and
amino acids +1, +2, and +3 carboxyl-terminal to the phos-
phorylated site. The motif is also consistent with consensus
phosphorylation site motifs for PKCs that include (R/K)X(S/T),
(R/K)(R/K)X(S/T), (R/K)XX(S/T), (R/K)X(S/T)(R/K), and (R/K)
XX(S/T)X(R/K) but begins to diverge for more distal amino



FIG. 3. The protein–protein interaction network analysis using STRING database. A search of the STRING database with PKCε and the 39
validated, putative PKCε substrates resulted in a network with 40 nodes and 52 edges, with a PPI enrichment value of <1.0e-16. Node color
represents functional annotations from Gene Ontology resource: Blue = Synapse; Red = Cytoskeleton Organization, Yellow = Actin Binding.
PKCε, PKC epsilon; PPI, protein–protein interaction.
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acids (Fig. 5) (29–31). None of the phosphorylation sites for
PKCε in PhosphoSitePlus were identified in our study. How-
ever, 34 of the sites we detected were present in
PhosphoSitePlus.
The ChemPhoPro database contains predictions of kinase

substrates based on an algorithm developed by Hijazi et al.
(28). There were no substrates nominated from the prediction
algorithm as possible PKCε substrates. The ChemPhoPro
database also includes 83 previously reported substrates
sourced from UniProt, one of which was identified in our
screen (MARCKS S163). Nine of the sites we detected were
present in ChemPhoPro, all of which were also in the Phos-
phoSitePlus database.
Functional Annotation of PKCε Putative Substrates and
Relationship to PKCε CNS Phenotypes

We searched for GO terms that were enriched among the
putative PKCε substrate genes using STRING. supplemental
Table S7 contains the full results of the GO term enrichment
analysis. Synaptic and cytoskeleton functions were highly
enriched in the GO terms. This is consistent with previous
results published for the synaptic proteome, as 32 of the pu-
tative PKCε substrates have been identified as synaptic pro-
teins (33, 34). This is also consistent with previous PKCε
literature, demonstrating a role for PKCε in cytoskeletal
function, morphogenesis, and the release of synaptic vesicles
(9, 35–47).
Since Prkce−/− mutant mice show decreased alcohol con-

sumption, reduced anxiety-like behavior, and an accentuated
response to benzodiazepines, we next focused on identifying
substrates that might be involved in these phenotypes (2, 3, 7).
For substrates that might regulate alcohol consumption, we
queried a database containing ethanol-related genes (INIA IT-
GED; http://inia.icmb.utexas.edu/) using our validated sub-
strate gene list. We found that 35 out of the 39 substrate
genes have been previously linked to alcohol consumption or
other alcohol-related phenotypes (Table 2). The remaining
substrate genes were not found in any IT-GED datasets.
To investigate putative PKCε substrates that might regulate

anxiety-like behavior or response to benzodiazepines, we
identified which PKCε substrates were also benzodiazepine
targets based on gene expression signatures in the L1000
database. We identified seven of the substrate genes in this
Mol Cell Proteomics (2023) 22(4) 100522 9
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FIG. 4. GeneMANIA network of PKCε and putative substrates. GeneMANIA connected PKCε and the validated, putative substrates by
coexpression, predicted interaction, physical interaction, colocalization, and shared protein domain data. Genes associated with the synaptic
vesicle and cytoskeletal related functions are colored within each circle. Genes that have coexpression, predicted interactions, or physical
interactions with PKCε are denoted with a colored border around each circle. The position of PKCε in the network is highlighted with a red circle
border. PKCε, PKC epsilon.
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search: Ptn, Ppm1h, Mapt, Gap43, Phactr1, Rph3a, Mtss2. We
also compared the putative PKCε substrate genes to genes
related to various types of stress (http://hpc-bioinformatics.
cineca.it/stress_mice/) and found that 18 out of 39 substrate
genes have been linked to stress in that the transcript abun-
dance of the genes is altered following exposure to experi-
mental stress protocols like social defeat stress, fear
conditioning, or restraint stress. Two of these genes, Phactr1
and Gap43, were notable because they have been linked to
alcohol, stress, benzodiazepine response and have evidence
supporting their interaction or coexpression with Prkce from
our bioinformatics analyses.
DISCUSSION

Here, we report using a chemical-genetic approach to
identify PKCε substrates and their phosphorylation sites from
10 Mol Cell Proteomics (2023) 22(4) 100522
mouse brain. We applied bioinformatic analyses to identify
potential novel drug targets for the treatment of excessive
alcohol consumption and anxiety. As validation of our method,
we identified several known substrates of PKCε, including
neuromodulin and MARCKS, confirmed their phosphorylation
by PKCε in vitro using peptide arrays or Western blot analysis
of GST-fusion proteins and performed motif analysis on the
identified phosphorylation sites showing consistency with
consensus PKC phosphorylation motifs. We also identified
several proteins that have not been previously identified as
PKCε substrates. Several are implicated in cytoskeletal
regulation, morphogenesis, and synaptic vesicle release.
To our knowledge, ours is the first screen for direct sub-

strates of PKCε in brain. However, there have been two
studies that have analyzed the phosphoproteome after PKCε
manipulation. One examined protein phosphorylation in the
liver of rats fed a high fat diet after treatment with a PKCε-

http://hpc-bioinformatics.cineca.it/stress_mice/
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FIG. 5. Amino acid motif surrounding the putative PKCε phosphorylation sites. Plot of the amino acid motif around the 45 identified sites
of modification ( ± 7 AA) in this study (A) and for the 252 sites of modification ( ± 7 AA) for PKCε in PhosphoSitePlus v6.6.0.4 (B). Plots were
created using the Sequence Logo tool on PhosphoSitePlus with default settings. PKCε, PKC epsilon.
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targeted antisense oligonucleotide (48). Two of the phos-
phorylated proteins they identified were seen in our study,
MAP-4 and serine/arginine-rich splicing factor 2. MAP-4
phosphorylation was increased, while phosphorylation of
serine/arginine-rich splicing factor 2 was reduced in a PKCε-
dependent manner, independent of the high fat diet treatment.
However, the sites of phosphorylation in both proteins did not
match the sites identified in our present study. Moreover, their
approach did not measure direct substrates of PKCε, only
how PKCε expression changes the phosphoproteome of the
rat liver following a high fat diet. A second study examined
protein phosphorylation in cultured mouse astrocytes
expressing a constitutively active form of PKCε (49). None of
the differentially phosphorylated proteins were identified in our
Mol Cell Proteomics (2023) 22(4) 100522 11



PKCe Substrates in Mouse Brain
current study, and they also did not measure direct kinase
substrates. In addition, they used cultured astrocytes which
can have properties different from those that reside in brain.
Our comprehensive list of direct substrates is thus unique and
could be valuable for groups investigating the function of
PKCε and for developing small molecule modulators of PKCε
signaling in the context of central nervous system disease.
Other groups have examined the phosphoproteome in an-

imal models of excessive ethanol consumption. One exam-
ined the dorsal striatum in ethanol naïve, high, and low
alcohol-preferring mice (50). Seven phosphoproteins that
were more abundant in the dorsal striatum of high alcohol–
preferring mice were also identified in our study, although
none of the phosphorylation sites were the same. These seven
proteins were Microtubule-associated protein tau (Tau), MAP-
1A, BRSK1, MARCKS-related protein, MARCKS, neuro-
modulin, and MAP2. Ten phosphoproteins that were signifi-
cantly more abundant in the dorsal striatum of low alcohol–
preferring mice were also identified in our study. These were
Dynamin-3, Tau, neuromodulin, RAS guanyl-releasing protein
2, Phosphatase and actin regulator 1, MAP-1A, MARCKS,
PPP4R4, AGAP-1, and Serine/arginine-rich splicing factor 2.
Interestingly, the phosphorylation sites on neuromodulin
(S41), MARCKS (S163), and PPP4R4 (S777) that were more
abundant in the low alcohol–preferring mice are the same
phosphorylation sites we identified. This overlap in identified
proteins provides further evidence that these proteins regulate
alcohol-related behaviors, especially considering that all but
two of these proteins (MAP-1A and BRSK1) were also found in
the INIA IT-GED microarray database.
A second study investigated the effect of adolescent corti-

costerone exposure on adult ethanol and sucrose self-
administration and on the phosphoproteome of the adult rat
amygdala (51). Adolescent corticosterone exposure increased
several phosphoproteins and among those most altered that
we also found in our study were MAP2, Tau, and MAP-1A.
However, the sites of phosphorylation identified were
different from those in our study. Nevertheless, these findings
further implicate several substrates of PKCε as being involved
in responses to alcohol and stress.
PKCε Substrates in Neurotransmitter Release and Synaptic
Regulation

PKCε is present in presynaptic terminals and plays a role in
vesicle release (9, 52). Glutamate exocytosis from hippo-
campal granule cells in guinea pigs depends on the actin-
binding domain of PKCε (35). In the rat calyx of Held, activa-
tion of PKCε causes its translocation to the presynaptic
membrane (37). Activity-dependent potentiation of large
dense-core vesicle exocytosis in chromaffin cells is regulated
by PKCε and MARCKS through modulation of vesicle trans-
location (39). In rat brain slices, selective activation of PKCε
with α,β-DCP-LA stimulates the release of glutamate from the
12 Mol Cell Proteomics (2023) 22(4) 100522
hippocampus, dopamine from the striatum, and serotonin
from the hypothalamus (42). Additionally, PKCε has been
implicated in acetylcholine release at the rat neuromuscular
junction (44).
PKCε regulation of neurotransmitter release and synaptic

function may be particularly important for behavioral re-
sponses to alcohol. We previously found that ethanol-induced
enhancement of GABAergic transmission in the central
amygdala is PKCε dependent (41). PKCε inhibitors block
alcohol-induced GABA release in this region and when
administered systemically, they reduce alcohol consumption
in mice (4). Therefore, PKCε regulation of neurotransmission in
the central amygdala may be related to its role in promoting
alcohol consumption, suggesting that PKCε substrates
involved in neurotransmitter release could be drug targets for
reducing alcohol consumption. The substrates involved in
neurotransmitter release with at least one line of supporting
evidence from our bioinformatic analyses include calcium/
calmodulin-dependent serine protein kinase (CASK) Interact-
ing Protein 1 (Caskin-1), Synapsin-1, Brain-Specific Serine/
Threonine-Protein Kinase (BRSK1), Rabphilin-3A, and
Intersectin-1. None of these proteins have been previously
identified as PKCε substrates. Of particular interest are
Caskin-1, Synapsin-1, Rabphilin-3A, and Intersectin-1, since
there is some evidence that they are altered by chronic
exposure to alcohol and stress and therefore might influence
alcohol consumption and anxiety.
Caskin-1 is a synaptic scaffolding protein that binds to

calcium/calmodulin-dependent serine protein kinase and may
link CASK to downstream intracellular effectors by binding the
cytoplasmic tails of neurexins and other cell-surface proteins
(53). Behavioral tests of Caskin1 KO mice suggest that
Caskin-1 contributes to a wide spectrum of nervous system
functions, including gait, nociception, memory formation,
dendritic spine morphology, and the stress response (54, 55).
Caskin1 transcripts are reduced in cortical astrocytes from
humans with alcohol use disorder, in frontal cortex of C57BL/
6J mice after chronic, every-other-day ethanol consumption,
and in mouse cortical astrocytes after chronic intermittent
ethanol exposure (56–58). Moreover, Caskin1 was a hub gene
in an astrocyte-specific gene network that was downregulated
by chronic intermittent ethanol treatment, suggesting that
Caskin-1 in astrocytes could be a system regulator of the
response to chronic ethanol consumption (58).
Synapsin-1 is the first identified synaptic vesicle protein and

the most abundant phosphoprotein found at synapses
(59–61). It is primarily expressed in neurons and is composed
of a short N-terminal sequence (A-domain), a short linker (B-
domain), a large conserved central sequence (C-domain), and
a proline-rich C-terminal region (D-domain) (62). The A-domain
of Synapsin-1 attaches to synaptic vesicles and can be
phosphorylated by cAMP-dependent PKA and calcium/
calmodulin-dependent protein kinase 1 (CaM kinase I) at
Ser-9 (63, 64). Phosphorylation of the A-domain causes
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Synapsin-1 to dissociate from synaptic vesicles (65). The D-
domain of Synapsin-1 can be phosphorylated by calcium/
calmodulin-dependent protein kinase II (CaM kinase II) at
Ser-566 and Ser-603 (62, 63, 66, 67). Phosphorylation at these
sites is implicated in the regulation of synaptic vesicle mobi-
lization and neurotransmitter release (68, 69). These sites are
close to the putative PKCε phosphorylation site identified in
this study, Ser-568. This suggests a role for PKCε in regulating
synaptic vesicle release via Synapsin-1. Synapsin-1 is
involved in various aspects of the synaptic vesicle cycle and
plays an important role in the synchronization of GABA release
in interneuron populations (70). Chronic ethanol exposure in-
creases the clustering of Synapsin-1 in hippocampal neurons,
and Synapsin-1 phosphorylation is increased in the brains of
mice after an acute exposure to ethanol (71, 72). Syn1 gene
expression is reduced in the cerebellum of C57BL/6J mice
after one session of “drinking-in-the-dark”, which is a
behavioral model of alcohol binge drinking (5). Syn1 expres-
sion is in contrast upregulated in the frontal cortex of post-
mortem human brains from individuals with a history of
alcohol dependence (73).
In addition to ethanol responses, Synapsin-1 has also been

implicated in the transcriptional response to chronic social
defeat stress (CSDS) in mice. The CSDS model is a mouse
model of resilience and susceptibility to psychosocial stress
(74, 75). There appears to be a strong genetic component to
CSDS-induced social avoidance, as different inbred strains of
mice show varying proportions of resilient and susceptible
mice (76). Syn1 transcript levels are reduced in the ventral
hippocampus and bed nucleus of the stria terminalis of both
DBA/2 and C57BL/6 mice following CSDS (76, 77). However,
Syn1 transcript levels are higher in the nucleus accumbens of
C57BL/6J mice, which are relatively resilient to CSDS (78).
Moreover, the transcriptional response in the nucleus
accumbens was associated with antidepressant responses to
ketamine and imipramine, suggesting the transcriptional
changes in the nucleus accumbens could be critical for stress
responses (78).
Rabphilin-3A is a vesicle-associated protein involved in

synaptic vesicle trafficking and release. Rabphilin-3A was first
identified as a protein that interacts with the GTP-bound form
of RAB3A and localizes with synaptic vesicles (79–81).
Rabphilin-3A is phosphorylated by both PKA and CaM kinase
II, but the role these events play in the regulation of synaptic
vesicles is unclear (82, 83). Expression of Rph3a is reduced in
the dorsal and ventral striatum of C57BL/6J mice after a single
drinking-in-the-dark procedure, and an SNP in Rph3A has
been associated with alcohol consumption in Korean men
(5, 84).
Intersectin-1 is a scaffold protein involved in multiple cellular

signaling pathways, regulation of the synaptic vesicle cycle,
neuronal migration, and synaptic plasticity (85–87). There are
two main isoforms of Intersectin-1 that have differential tissue
expression. The short isoform is expressed ubiquitously, and
the long isoform is expressed specifically in neurons (88, 89).
In the brain, Intersectin-1 regulates dendritic spine develop-
ment in hippocampal neurons and is an important mediator of
fast neurotransmission (90, 91). A role for Intersectin-1 in fast
neurotransmission involves its coordination of Synapsin-1
localization and the clearance of SNARE complexes at pre-
synaptic release sites (92, 93). Itsn1 transcripts are reduced in
the basolateral amygdala, nucleus accumbens shell, and nu-
cleus accumbens core of ethanol-naïve High Drinking in the
Dark (HDID-1) male mice (6). These mice have been selectively
bred from heterogenous stock HS/Npt mice for binge-like
drinking to high blood alcohol levels (94, 95). This finding
suggests a role for Itsn1 in predisposition to binge drinking.

PKCε Substrates Involved in Cytoskeletal Regulation and
Morphogenesis

Our PKCε substrate screen revealed several genes associ-
ated with cytoskeletal function and morphogenesis. A role for
PKCε in cytoskeletal regulation is consistent with the pres-
ence of an actin-binding domain in PKCε that is unique among
the PKC family and its previously described role in cytoskel-
etal regulation in non-neuronal cells (9, 35, 36, 38, 40, 45).
Among our list of validated substrates, we found several
microtubule-associated proteins to be putative PKCε sub-
strates, including microtubule associated protein RP/EB family
member 2 (EB2), microtubule associated protein tau, micro-
tubule associated protein 2 (MAP2), and tubulin beta 2a.
EB2 has previously been associated with congenital skin

disorders and was recently directly linked to human cranial
neural crest migration (96–98). However, the function of EB2 in
the mature brain has yet to be characterized. An SNP in
Mapre2 has been associated with alcohol dependence (99).
Mapre2 transcript levels are higher in the brains of alcohol-
preferring rodents that in nonalcohol-preferring lines (100).
Mapre2 expression is also linked to stress as it is expressed at
lower levels in the hippocampus after CSDS in C57BL/6 mice
(76).
Tau is abundant in neurons, plays a primary role in the as-

sembly and stabilization of microtubules, and is key to the
pathogenesis of several neurodegenerative disorders known
as tauopathies (101–103). The binding of Tau to microtubules
is negatively regulated by phosphorylation at specific sites by
MAP2 kinase (104). PKCε can phosphorylate the microtubule-
binding domains of Tau in vitro, but no studies have identified
Thr-694 as a site of PKCε phosphorylation (105–107). Whether
Thr-694 phosphorylation occurs in brain is not known. There is
evidence that alcohol consumption may exacerbate tauo-
pathies, and a large multiomics analysis found increased
MAPT expression associated with increased alcohol con-
sumption in humans (108–110).
MAP2 is another microtubule-associated protein that is

enriched in neuronal dendrites and plays functional roles in
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microtubule stabilization, bundling, and proper spacing in
dendrites and axons (111–115). Phosphorylation by PKA,
PKC, and MARK1 regulate the association of MAP2 with mi-
crotubules (116). These kinases phosphorylate the
microtubule-binding domain of MAP2 and cause it to disso-
ciate from microtubules (117–123). Map2 expression is
reduced following chronic alcohol consumption and is
increased during withdrawal in specific rat brain regions (124).
Map2 mRNA is also increased in the extended amygdala of
ethanol-naïve HDID-1 mice compared with HS/Npt mice from
which they were selected (125).
Tubulin beta-2A chain is a member of the tubulin family of

proteins that co-assemble into microtubules. The peptide we
identified is also present in Tubulin beta-2B, 4A, 4B, and five
chain proteins. Microtubules are highly dynamic and provide
cellular support, allow for intracellular trafficking, and are critical
for neuronal migration during development (126, 127). Muta-
tions in tubulin genes can cause brain malformations known as
tubulinopathies (128). While no mutations in these genes have
been linked to alcohol consumption, tubulin proteins overall are
reduced, while expression of TUBB2B, TUBB4A, and TUBB4B
genes is increased, in brain tissue fromhumanswith alcohol use
disorder (73, 129, 130). Rodent models have also revealed
alcohol-related changes in brain tubulin gene expression and
protein levels. Tubulin beta-2A chain is increased in the nucleus
accumbens of male C57BL/6J mice stably consuming ~15 g/
kg/day with continuous voluntary access to 20% alcohol, and
Tubb2a expression is increased in the extended amygdala of
ethanol-naïve HDID-1 mice compared with HS/Npt mice (125,
131). However, Tubb4b expression is decreased in the pre-
frontal cortexof femaleC57BL/6Jmiceafter intermittent access
to 20% alcohol, and Tubb5 expression is decreased in the nu-
cleus accumbens shell and bed nucleus of the stria terminalis of
ethanol-naïve HDID-1 mice compared with HS/Mpt mice (125,
132). There is also differential expression of Tubb2b and
Tubb4b in the brains of mice genetically predisposed to
elevated alcohol consumption, and Tubb5 expression is
differentially expressed in mice after a drinking-in-the-dark
procedure (5, 100). In addition, after chronic social defeat
stress, Tubb2a, Tubb2b, and Tubb4b expression is increased in
the hippocampus of male DBA2/J and C57BL/6J mice, while
Tubb4a and Tubb4b expression is increased in the nucleus
accumbens of male C57BL/6J mice (76, 78). Therefore, several
members of the tubulin family of proteins are responsive to
ethanol and are differentially expressed in rodents selectively
bred to consume high levels of ethanol. Taken together, these
findings suggest amechanistic link betweenPKCε, cytoskeletal
regulation, and alcohol consumption.

SUMMARY

In summary, we identified 39 putative PKCε substrates, most
of them novel, using a chemical genetic screen. Bioinformatics
analyses showed that many are important for neurotransmitter
release and microtubule function. Transcripts for several
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substrates are altered by alcohol exposure and chronic stress.
Therefore, this investigation provides a substantial list of can-
didates for further investigation into the role of PKCε in alcohol
consumption and responses to stress.
There are caveats to our results that deserve consideration.

First, production of whole brain lysates eliminates the normal
compartmentalization of proteins within cells and can lead to
kinase-substrate interactions that do not normally occur under
physiological conditions. Therefore, it is likely that some of the
proteins we identified are not true PKCε substrates in intact
tissues.
A second caveat involves the method used to capture thi-

ophosphates which also captures peptides with cysteines.
These form thioether linkages that are stable to oxidation and
are retained on the iodoacetyl beads. In silico analysis of
trypsin digests of the human proteome estimates that about
24% of the peptides contain cysteine and therefore would be
missed by the method we used (12).
Third, although many proteins were thiophosphorylated in

the bulk samples (Fig. 1A), we only identified peptides that
were specifically present in samples incubated with AS-PKCε
and were detected in at least two experiments. This stringent
analysis decreased false positives but may have resulted in
false negatives for those phosphoproteins of low abundance
or with some abundance in samples incubated without AS-
PKCε. Indeed, when we inadvertently included five peptides
that appeared in only one of the three experiments, we found
that two of these (peptides associated with genes Arhgap12
and Map7) were validated by the peptide array. We did not
include these two in the bioinformatics analyses.
Someputative substrates confirmedbyWestern blot analysis

of phosphorylated GST fusion proteins, mGluR5 and GLAST-1,
were not detected on the peptide array. Thismay have occurred
because anchoring of some peptide sequences to the array
membranemay interferewith kinase-substrate interactions that
more readily occur in solution. Therefore, while peptide arrays
are efficient at screening for substrates, they may miss some
substrates of importance. Follow-up solution-based kinase
assays can be used to detect these proteins.
Finally, our studies did not determine the functional signifi-

canceof the identifiedphosphorylation sites. Futureworkwill be
needed to investigate the importance of these phosphorylation
sites for protein and cellular function and for animal behavior.
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